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Preface
J

sessions.

? The sessions cencompassed a broad range of topics. A number of sessions dealt with computational
methods for traditional statistical areas. These included Time Series, Nonlinear Models, Repeated
Mcasures Data Analysis, and Categorical Data Analysis. Some sessions were in the rclatively new
of Statistics such as Artificial Intelligence, the Metadata of Computational Processes, Statistical
Computing Languages, and Statistical Workstations. There were also sessions in Numerical Mcthods,
Density Estimation, Teaching of Statistical Computing, Statistical and Mathematical Software and
Graphics. During one session the entire audience participated in a round table discussion on the
Performance of Statisticians with Statistical Software. Written versions of nearly all these papers
are in this volume.. A few papers were not included because of prior copyright clsewhere or because

the manuscript was not received from the authors.

A large number/of peoplc helped make the Seventeenth Symposium a big success.
committee was Gary Anderson, Kenneth Berk, Thomas J. Boardman, Daniel! B. Carr,
B. Forsythe, Richdrd J. Heiberger, Sally E. Howe, Robert E. Kass, William Kennedy, J. Richard Landis,

The Seventeenth Symposium on the Interface of Computer Sciences and Statistics was held in the
Radisson Plaza Hotel, Lexington, Kentucky on March 17-19, 1985.\ The conference was hosted by the
University of Kentucky. The format for the Symposium was very 4imilar to the preceding symposia in
the series. Dr. John Nash presented the keynote address on Monday morning.
scts of three paralle! sessions and workshops. On Tuesday there were three sets of threc parallel

John Nash, Wesley L. Nicholson, Gordon Sande, Victor Solo and Constance L. Wood.

The office staff of the Department of Statistics, particularly Debra Arterburn and Brian Moscs,
oversaw ‘the correspondence and bookkeeping, maintained a participant data base, assembled registration
packets, and manncd the registration desk. Wimberly C. Royster, Dean of the Graduate School,
Baer, Dean of the College of Arts and Sciences, and Joscph M. Gani, Chairman of the Department of
Statistics, were all very supportive and made many resources of the University available for the

Symposium.

The tacilities of the Radisson Plaza llotel were extremely nice.
Edwards and the rest of the Radisson staff. The Greater Lexington Convention and Vistors Burcau
welcomed participants at the airport, provided literature on things to do and places to cat, and also

helped with the registration.

The American Statistical Association was helpful in many ways.
and Jean Smith are particularly appreciated. Financial support for the Symposium came from the

Office of Naval Rescarch and the University of Kentucky.
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Keynote Address

TAKING IT WITH YOU --

John C.

Faculty of Administration
University ot Ottawa
Ottawa, Ontario,

Canada

The subject of the presentation

portable.

IMTRODUCTION

As an active user and promoter of small
computer solutions to both scientific
and general administrative problems,
and as scientific caomputing editor faoar
Byte magazine, I am clearly identified
with that proliferating technology
collectively called the “"microcomputer
revolutiaon®. However, th2 main
obyective ot this presentation does NOT
cancern microcomputers, e<cept where
tlhe gQadgetry illustrates tow obstacles
to portability of statistical computing
<1 1%€e Or may be overcome. In worlting

t 2 make our work as free fraa tios to
20 aphic locatiors as poseitle, 1
firmly believe that clear thinking and
a wide perepective are fai more
important than brilliance in the design
of a specific piece pvf hardware or
software.

STATISTICAL COMPUTING -- DEFINITIONS

The basis of statistical computing has,
in my opinion, five facets!:

1) methods for data analysis and
statistical interpretation

2) data which is tc be the subject of
analysis or computation

3) documentation of what WE -- the
statisticians -- do, that is, of
statistical practice

PORTABLE STATISTICAL COMPUTING

Nash

K1N &NS

is the needed or wanted basis for
portable statistical computing --
should have in order to carry out desired statistical computations
wherever they happen to be. Expanding on this theme, we will examine
what this basis implies for statistical software, the data sets we
examine, our own practices and “"documentation”™ in the widest sense, the
computing hardware and software environments useful to support this
activity, and the standards needed to assist us in rendering our work

infrastructure statisticians

4) tabulation and display mechanisms,
which are separated from methods to
retlect the necessary involvement of
machinery to effect the desired
outputs

5) the training, education and
research (self-education of the
profession) to improve the overall
technology of statistical computing as
practised.

Here we do not consider the analysis of
the results of computations as part of

the task at hand. However, this
distinction is blurred by the
development of expert systems for
particular areas of statistics.

The basis of statistical computing
listed above is in the domain of ideas.
Their realization is the work upan
which many of us labour. We endeavor
first to render the ideas in greater
detail as qgeneralized software --
computer programs, data files and
structures, books, research papers,
presentations, and designs ot graphics.
Second, we try to put the ideas into

the "hardware"” forms -- disks and
tapes, paper, integrated circuits,
audio/visuals. The juxtaposition of

these software/hardware ideas is
deliberate, in that it focuses
attention on the possibility that there
mav be several renderings of an idea in
difterent “languaqaes” of expression and
different media of recording.
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PORTABILITY

One can think of several routes to make
serious statistical computing portable.
Portable personal computers of
considerable power are now available,
some of which are battery powered and
need no AC power supply. The hardware,
however, needs to be complemented by
suitable software, and our data must be
at hand in a usetul form. Neither of
these latter requirements is currently
satisfied, but the availability of the
machinery will entice developments

to appear over the next few years.

To gain access to more powerful
computers and software, and to larger
data sets than may be accommodated on a
portable microcowmputer, we may look to
long-distance communication via
terminais. Here the major limitations=
are on the flexibility and convenience
of data and command input and o#f
displays or printed output. Few vaice
or data communication facilities have
sufficient capacity for detailed
graphics, either input or output.

Despite their present limjitations,
various communications technologies
available now do allow the sharing of
software and data sets, but only i the
pragram or data files are in some sense
“standard®” so that the recipient may
make use of them. To date, standards
for these statistical, as opposed to
computational, constructs are not in
place.

Finally, even when the jideas behind a
particular statistical computation have
been transmitted between practitioners,
we may observe that the results
obtained by the different workers are
not the same. Ultimately, we need a
commonality ot approach and methods at
a relatively detailed level. Simply
specifying a method, for example linear
regression, is far from sufficient.

We now examine some of these ideas in
more detail.

DATA

Data has many attributes: format,
medium, content (or lack thereof),
timeliness, volume (of data), history
tauthor, origin, methods of gathering,
notes and opinions), imputation
methods, sampling design, aggregation
procedures, whether "raw” or “cooked®,
security or confidentiality status (I
owe this addition to & conversation
with Gordon Sande). Other workers,

particularly John Tukey, have presented
similar categorization lists. In
transferring data from one set of
workers to another, we must take
account of some or all of the above
attributes. The task of developing a
Qeneralized format to accommodate these
needs is not a trivial one. With Fred
Brown, a research assistant, 1 have
tried to develop such a format, but do
not yet feel satisfied that it is ready
to publtish.

TABULATION AND DISPLAY

The aspects of tabulation and display
which render them useful as tools for
statistical analysis are the very
features which are obstacles to
portability. These can be summarized
as form, style and practice. Form will
reflect the overall type of design
followed, Cleveland ({11, (2], [3]) has
made a number of observations on form
vhich also reflect on style -~ how the
particular form is translated to the
ocbject seen. The impact of available
machinery on form and style chosen is
obvious i+ one considers but one
example, the Chernoff face. This
display translates elements o+ a
multivariate observation into features
lopsely resembling a human +ace. I
have personally found it a useful
mechanism for demonstrating results but
a rather poor exploratory data analysis
tool. Nevertheless, if one wishes to
use “"faces", then some way of drawing
them must be found.

Traditiona)l approaches (Flury &
Riedwyl, 1981) use plotters ot various
typen. One can envisage bit-map
displays of modern microcomputers (e.g.
Macintosh) being suitable, but
conventional computer terminals lack
the ¢+lexibility to "draw” the necessary
graphs. An alternative approach is to
change the style, and to some extent
the form, of the "face” and use
printer-plot ideas. Turner & Tidmore
(1981) developed a FORTRAN program for
this which was relatively easily
transferred to the Amdahl mainframe at
the University of Ottawa by Mr. P.
Bevnaon, one aof my students. Later Fred
Brown designed a face-drawing program
in BASIC far an Osborne 1, in the
process applying some ideas +rom
portraiture to improve the “facial”
proportion.

In transporting their analyses,
statisticians are unlikely to be
satisfied with just one of the above
alternatives being available. When
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graphical devices are available, the
printer-plot is unlikely to satisty.
Therefore, & range of software is going
to be needed, all pieces of which
should interface easily to the data and
to the command processor, thereby
allowing the statistician to control
the computations.

As a footnote to this discussion, I
would like to point out that
statistical displays of a relatively
advanced nature are being used outside
the professian. On Monday, March 11,
198%. on page B6 of the Toronto Globe
snd Mail (Report on Business) is a
Tiite nicely executed set of star
displavs with an interesting choice of
axes directions and scalings. This
serves to underline the need for
standardization of the practice of
tabulation and display so that readers
moving from one set of displays to
another are not fooled by a simple
change in the conventions.

METHODS

Methods are the translation of
atatistical thought into procedures.
The greatest obstacle here to
portability is the many levels of
choice in transferring the general idea
into a specific and unambiguous
procedure. For instance, in
considering the general method of
regression, 190 vears old this year, we
must first decide between the usual
least squares loss function or other
metrics, second (assuming least
squares) whether conventional linear,
ridge or nonlinear approaches should be
used, and third (assuming conventional
linear 1.s.) which algorithm to
implement. Even having chosen a
particular algorithm in general, for
example, solution of normal equations,
GR decomposition or singular value
decomposition of the independent
variable matrix (Nash, 1984, p.

166¢f), we may have to select an
implementation approach.

So +tar, we have no executable program
code. Software is the realization of
methods, and once again it is the
diversity of options which hampers the
portability ot the statistical
computations. We may choose to
organize our statistica) software as
individual programs which stand alone,
as a collection or library of related
programs and/or subroutines, or as an
integrated package not requiring the
user to provide controls or operating
system commands. Clearly the current

trend is toward packages, even though
this may make it more difficult to
perform particular computations in
particular computing environments. The
usual form in which packages are
distributed is as an ensemble of code
executable on a particular computer
configuration, since it runs against
the producers’ interests to have users
transport (steal?) the code to other
machines. Libraries are usually
available only in machine (object) code
+orm, while the individual programs of
statistical software may be found as
source code.

Source code must be expressed in some
programming language, and maost object
code reflects some of the constraints
implicit in all programming languages.
The languages themselves echo features
of the hardware which is available --
tloating-point arithmetic, graphical
devices, memory management. At the
hardware level, we note that there are
many established international,
national or institutional standards
which have been agreed and adopted. [ ¢
specifically exclude the so-called
*"industry standards® created by
advertising copy writers.) Programming
language standards are gradually having
an influence on the spoftware being
written, but to my knowledge there are
no standards yet being considered +or
the design and expression of program
packages. For the user to be able to
begin using one package after
experience with another, some
reasonably simple guidelines are
clearly needed for the user interface,
for the meaning of commonly used words,
and for accessing data, devices, or
other computing resources.

As statisticians we should be more
aggressive in supporting existing
standards, even as we begin the search
for new ones to cover our particular
area of work. Our lack o+ awareness of
programming standards is illustrated by
code published by Frank (1981) in the
Journal) of the American Statistical
Association. In a program barely one
pag9e in length, practically each line
has some construct or other which is
non-standard, a typographical error, or
a stylistic fault. 14 the purpose in
publishing this code is to allow its
use by other statiaticians, then the
editors, even more than the author,
have missed the target!
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HANDLING CHOICE

To render our cowmputations portable to
other computing environments and
practitioners, I suggest four main
routes:

1) Documentation of sufficient quality
is needed so that all relevant details
ot the implementation o+t a method or
the characteristics of a data set or
approach to an analysis are clearly
discernible. Special features -- the
exceptions to the rules -- need to be
noted.

2) Statisticians need to agree, either
formally or informally, on the
procedures and ideas of standard
algorithms and practices, While the
etfort to formalize agreement may
appear to be enormous, there is a
growing body of work which is carried
aut by specific methods attributed to
workers by name, for example,
Marquardt's method for nonlinear least
squares parameter estimation. Such
methods can be written down clearly
(Nash, 1979) in step-and-description
form, and modifications can be noted in
suitable documentation. However, the
will is needed to perfarm activities
seemingly peripheral to statistics.

3) For most statistical analysis the
computations may be consiasered
conventional. To avoid disagreements
over the results, standard computer
praograms and data handling procedures
are needed. Again, the eftort to
obtain formal agreement may not be
required, since many statisticians are
using a relatively small set o+
packages such as Minitab, SAS, SPSS ar
BMDP. There is a considerable interest
in the development of test problems
(see the workshop session "Measuring
the performance of statisticians with
statistical software” of these
proceedings) and it is likely the
producers ot packages will align their
major programs to produce similar
results in order to avoid criticism and
consequent marketing headaches. Once
again, variations on a theme need to be
documented. Moreover, the existence of
a standard method should not prevent
researchers from attempting different
approaches.

4) Mechanisms need to be established
for resolving real or apparent
inconsistencies in results.
Statisticians are in the forefront in
this regard, since our journals have
adopted a practice of presenting papers
followed by discussions. This presents

Nt et RO

one avenue for airing differences of
opinion. For discussions at a more
detajiled level, workers may want to
consider establishing electronic mail
conferenc s moderated by krnowledgeable
researchers who can focus discussion.

DOCUMENTATION

My firm opinion is that good
documentation is the core of advances
in portability, and should mention the
$ollowing:

- the data or type of data which can
be/was analyzed

- the methods, algorithms, software
used

- the time/date when each entry in the
documentation was made

- all edits (of data / methods /
dacumentation)

-~ observations / comments / hunches

- the name(s) ot persons adding to or
changing documentation,

TRAINING, EDUCATION AND RESEARCH

Portability of statistical computing
concerns the transfer of ideas, which
at present is plagued by our academic
traditions. These have led to delays
in publication because of the financial
pressures on journals and the slowness
of refereeing and review. VWorse, since
academic workers' career development
depends in part on journal articles,
there is little credit +or
non-traditional forms of idea tranafer
-- computer conferencing, software
development, computer aided instruction
develppment. It is also clear that

use is going to be made of statistical
computation by those who have had no
part in developing the tools -~ new
statisticians, professionals in other
disciplines, and the general public.
The last group is an increasing “user®
in developing business or public
policy, where it §is important to argue
the consequences of decisions rather
than the validity o the data or
methods. Consequently, impatience with
results which cannot be repeated is to
be expected, and the codification and
standardization of statistical practice
can have a large payof#f.

A by-product of such coditication is
that it permits exper* systems, either
tactical (for specific types of
computations) or strategic (to
recommend global approaches to data
analysis), to be developed.
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REALIZATION OF PORTABILITY

The discussion above has a possible
concrete realization which can be beqgun
immediately. The technical
requirements to allow statistical data
and software to be transferred from
location to location via communications
technologies can be met, even if not
with great ease. At a minimum, these
requirements are

1) file formats for programs and data,
which I would currently recommend be
simple text +iles (code wmay have to be
transferred as hexadecimal digits).

2) file transfer mechanisms, such as
electronic mail with suitable file
server (s}, Byte magazine already
allows users to download programs which
have appeared in the magazine, but
access is at the moment via
iong-distance voice lines, which are
much more expensive than the
packet-switched data networks.

3) standards for data and programs.
while not yet established, one can
imagine a relatively simple, limited
standard for small to medium sized data
sets and for the expression of programs
in source code in one Or wmore
programming language for a restricted
class of target machines.

The technical regquirements, as

del insated above, will not be
translated into a reality without
tnvestments. First, entrepreneurs will
need to foresee sufficient rewards to
justify the expenditure for a
"head-end” +ile store to maintain the
base of data and software with
attendant telecommunications hardware
and software to allow easy access for
(possibly) naive users. The hardware
for telecommunications at the present
time should probably link to one or
more of the public packet switched
networks rather that the usual
voice-line telephone. Software must
handle both the database as well as the
user interface. Simple but effective
charging algorithms are needed s=o that
revenues can be recorded and collected
without undue diféiculty +or
subscribers.

The development o+ standards requires
investments of time and monev on the
part of those involved in statistical
computing. Except in the quality
control area, statisticians have not
vet participated (as statisticians) {n
these types o4 activities.

The third "investment” needed is in the
development of the intellectual
property toc be transferred and shared
among statisticians, Developers will
have to receive academic credit for
such work, or it will have to be
remunerated in the marketplace. The
latter remuneration requires rovalties
to be paid, suitable cooperative
enforcement of ownership of the
intellectual property, and attractive
pricing and service by the vendors to
encourage users to obtain the material
from the authorized source. Indeed,
soétware vendors such as Borland
International have demonstrated that a
9ood product at an attractive price
will not be “stolen” to an appreciable
extent.

PROGNOSIS

The above recipe for permitting
portability of statistical computing
via a central database of data,
programs and documentation is feasible
to try now. I believe that the time is
ripe to begin some experiments in
restricted areas of statistical
computation to discover the details o#f
design which will facilitate further
progress. Standards for computer
programs for statistical computations
are overdue, particularly for those
which are published in journals. In
arder to move from the domain of
research to generally available
reality, analyses of the risks and
benefits of commercial investment will
need to be prepared, and consortia
formed to market (partial)
implementations of such systems. This
last point represents the end-goal of
the ideas presented here, and believing
that the concepts presented are
teasible to carry out, I have started
to seek business alliances to realize
them. However, I hope that those in
the audience who do not accept the
total parcel presented will still find
valuable points within the discussion.
Finally, while I have {ocussed on
moving ideas rather than people and
machinery, it should be kept in mind
that there are often reasons why it is
necessary to travel and transport in
order to take our statistical
computations with us.
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ON BOOTSTRAP ESTIMATES OF FORECAST MEAN SQUARE ERRORS FOR AUTOREGRESSIVE PROCESSES

David F. Findley

Statistical Research Division
Bureau of the Census

Washington, D.C.

20233

This paper presents several analyses which suggest that the bootstrap procedure used
by Freedman and Peters to simulate errors in forecasting future values of an econo-
metrically modelled process is of limited usefulness for estimating mean square fore-

cast errors.

1. INTRODUCTION

Freedman and Peters (1984) recently applied
a resampling procedure (the “bootstrap") to
ohtain estimates of mean square error for the
forecasts from an autoregression with exoge-
neous terms., In this paper, we start with a
theoretical analysts of thefr suggested
procedure for the case of (not necessarily
stationary) autoregressive models without
exogenous terms and later descrihbe two situ-
ations in which the same conclusions hold in
the presence of exogenous variables. .

The theoretical mean square forecast error
from an estimated model is the sum of two
components, the mean square forecast error
of the optimal predictor and the mean square
difference between the optimal forecast and
the estimated model’s forecast. This latter
component is of order 1/T, where T is the
length of the observed series, and so is
negligible with large samples. Our theoret-
tcal analysis in Section 2 shows that the
bootstrap estimate of mean square forecast
error is the sum of the usual (naive) large-
sample estimate of "the first component, easi-
1y obtainable without the bootstrap, and a
small-sample estimate of the second. A
gaussian Monte Carlo value of the second com-
ponent is obtained in Section 3 for series
of length 25 from the AR(2) models used in
the study of Ansley and Newbold, along with
the value of the root mean square error
(rmse) of the large-sample estimator of the
m-step-ahead forecast error, form =1, 2

and 5. In these examples, the rmse is always
suhstan "ally larger than the 0(1/T) compo-
nent, supporting the observation of Stine
(1982) that estimates of the second com-
ponent are of little use in estimating mean
square forecast error unless better estima-
tors of the first component are avatlable.

In the final section, we discuss conditional
forecast mean square errors associated w
predictions of the future of the observed
sample path, and conclude that in this context
as well, the bootstrap's potential contribu-
tion seems limited,

2. BOOTSTRAP ESTIMATES OF UNCONDITIONAL
MEAN SQUARE FORECAST ERROR

The simple hootstrap procedure of Freedman and
Peters we described below would appear to be
appropriate when observations yj,...,yy are

available from a time series obeying a general
p-th order autoregression (p<T) of the form

(2.1} ye * § + $1¥t-1 * o.s * .th-p
+ ey (toptl) ,

where e, (t>p+l) are independent, identically
distributed random variables with mean O and

variance o2 which are independent of earlier
y's; that is, for k>0, ey and yy_x are inde-

dependent. It is assumed that the order p is
known and, only for simplicity of notation,
that all of the parameters ¢),...,4, and &

are unknown. Define 8 = (6,01.....0p). For any

m>0 we can use back substitution in (2.1) to obtain

Xm-l

22yt I

vje]’,.m_j

+ falo UyTseos 2YT-p+l )
where the coefficients w¥g(=1), ¥, ¥p,... satisfy

Zmin(J.p)

(2.3) k=0 d¥j-k = 0 (40 = -1),

and where ful81(yT,...,¥T-p+1) is linear in

YTreoes¥Topsl and § . For example, if p=1, then
vy = o and fL(8,01)0yy) = 801+ 4; ¢ ...
+ OT'X) + OTyt. The two expressions on the
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right hand side of (2 2) are stochastically
independent since e's are independent of
eartier y's. It follows from this that
f,,.LBJ(yT,....ynp_l) describes the optimal
forecast (the conditional mean of yr,, given
Y1aee-s¥T) 2nd that X "JET«n-j 4s the result-
ing forecast error.

This optimal forecast cannot be ‘grecisely deter-~

(}ned because 8 ts unknown.
T Bp) s any estimate oT 8 obtained

USing yy,«..,y7s then fm[gl(n.---.yr-pu)
is a forecast of YT+m With forecast error
~N
(2-4) YT+ = fm[_O_](.yTl"'oyT-p-l-l)
m-1

= EJ‘O *jeT*m-j- + {fm[g](.VTn-'o.YT-p-t])

- fm[_a_‘](y‘l'----oy’f-p«'-l)}-
Since the eTim-j» j=0,..¢,m-1 are independent of
E, the two terms on the right hand side of
(2,4) are independent. Consequently, using E
to denote expectation, the mean square m-step-
ahead forecaét error when the forecast is

given by f,[8 ](YT----JT-pu) satisfies
(?.5) E(_YT."" - fm[:](yT....,yT_p#l)}

-1
= o2 2? -0 "2 ML CRIES PRPPIN ) SR

-~
- fl®)ygeeenyrpu 2 .
-~
If T is large, and 8 is a consistent estimator of
8 (e.g. from least squares, if Ejey|® <= for
some a>2, see Lat and Wel (1983)), then the
second term on the right in (2.5) can be ig-

nored and the mean square forecast error can
be adequately approximated by

(2.6) o2(T-p) Z"' 13

-~
where the ¥'s are obtained by using z's in

(2.3), and 32(T-p) is given by

(2.7) 82(T-p) = (T-p)-1 Zt o1

~ A
(yt - 6 - .lyt_l “tsa- Opyt_plz.

I[f T is small, however, then the second term
on the right in (2.5) need not be negligihle,
Als0, the quantity (2.6) may be an inade-

m-1
quate approximation to o Zj_o Of. For the

situation in which T is small, Freedman and
Peters (1983) propose the following bootstrap
procedure. Define

~ ”~ ~ ”~
B =¥t =8 - dgol meee $p¥top s
t = p+l,...,T

Since we are concerned with the situation in
which only one realization of the series y,

is observed, we will now regard the 'Qt's and

E as fixed. We will assume that the sample

mean @ of the @'s is 0, as happens, for ex-

ample, when® s chosen to minimize 32(T-p)
in (2.7). (Otherwise, use®, - € in place

of 8, below.) Then if we define e:. t> ,

by successive indepegdent draws with replace-
ment from [3p+1....,eﬂ, we obtain a

series of identically distributed random var-
fables with mean 0 and variance 32(T-p)
whose common distribution is the empfrical
distribution of {epﬂ....,eT). Now we
define the so-called psuedo-data series, _y:.
by means of y: = ¥i» 1<t<p and
(2.8) yg =8 +8yfq+oee +?py;_p
vep (tp).

The e*'s are independent of earlier y*'s. Let
9_* denote the value corresponding toiwhen
y;.....y? are used in place of the orig-
inal values yq,...,y7: For example, 1f§_was ob-
tained by least squares, we choose 8* so that

T

. * s *x
Zt-p-&l (ypg =6 -ypq - ooe - $pYt-p

32

1s minimized,

We have now created an analogue of the orig-
inal situation, but one in which we can use a
(psuedo-) random number generator to simulate
draws with replacement from p,l.....er) and
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so obtain as many (psuedo-) independent real-
jzations of yI....y?+m as we like, With

these realizations, finally, we can approxi-
mate the distribution of the forecast error

Process yTum = ful® JyTseees¥Tops1)

to any desired degree of accuracy. To the ex-
tent that this resembles the distribution of

YTem = fm[EJ(yT,...,y1+p-1). we thereby gain

information about the error process in which
we are actually interested.

For example, following Freedman and Peters
(1983), given realizations y*(n) ... y*(n),
1 T+m
n=1,...,N, we can approximate
(2.9) E' (Y Tem -
L (SR ) L

by means of
N
N-1 T (y*(n) .
2n=l yT#m
* * *
f.re*(n) m,... {n) y2,
(& ](yT .yT_pﬂ)
(In (2.9) and below, we use E* to denote ex-
pectation with respect to the distribution of

the series e:.)

The question is, what is the relationship
between the quantity (2.9) and E{yr4y -

fmfﬁ](yr....,yr_p+l)}z ? To obtain a par-
tial answer, we note that, by analogy with
(2.5), the quantity (2.9) is equal to
(210)  B2TpT ¥

J=1

* A
E U F 8y se ey Tope) -
* *

L (R [ L
Thus, this bootstrap procedure inflates the
naive estimate of mean square prediction er-
ror, {(2.6), by an amount
(2.11) B U8y, e ¥ Tpal) -

* *

fmr._e_ ](yTut-"y;-pOI))z

which {s clearly a proxy for the mean square

deviation of fmfgj(yr.....yr-p+1) from

fal81yTse s cu¥T-ps1)s

(2.12) BB UYT, e e a¥Topa1) -
fmfﬁl(yT»---.yT-p+1)12 ,

appearing as the second component on the right
hand side of (2.5). Since the quantity (2.6)
is known independently of the bootstrap pro-
cedure, we conclude that an estimate of (2.11)
is, in fact, the only contribution made by this
procedure. Further, to estimate (2.11) it fs

clear that psuedo-future data y;+1,....y;,m
are not required, but only realizations of
yf....,y;. Thus, in place of Freedman and

Peters' procedure to estimate the mean square
m-step-ahead forecast error, 1t seems appro-
priate to only consider quantities

S 37y (0) *(n) y .

(2.13) W11 TRy ,....yT_M)
*(n)y¢y*(n) *(n) 2

ful 1 Uy ey Tl|}:+l'

using these to estimate (2.12), the component
of mean square forecast error due to the use
of ¥ instead of 8 in the forecast function.

Somewhat analogous observations can be made
for the model selection procedure proposed in
Freedman and Peters (1983): Suppose two dif-
ferent autoregressive models, of orders p(A)
and p(B), are fit to the observed data
Y1seees¥Ts resulting in estimated parameters 6,

and 8g, residual populations {es(k)+1.....
e?) and ( eg(a)*l....,e?}. and psuedo-
data series yﬁ* and yg* as above. Freedman

and Peters suggest that each model he fit to,
and then used to forecast, the psuedo-data
from the other model, and that bootstrap es-
timates of the mean square forecast error be
calculated, The model having the smaller
estimated mean square forecast error is to
be preferred. Thus, using an obvious nota-
tional scheme, the idealized quantities to
be compared are

A%, A* BrgA%q A% A% 2
E - fore
(mi ,,,r_B ](yT veessy )}

T-p(B)
and
B*  B* _ cArgB¥q B B* 2
E {yTﬂn fm[_ﬂ ](.YT ""'yT-p(A)))
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By the argument used to deri.e (2,5), these
idealized quantities are equal, respectively,
to

m-1 Ay 2
(2.14) oK(T-p(A) [T (W))? +
A*reA A* A+ -
E (f,.,[_@A](yT ..--.yT_p(A))
BrgA*y( A" A 2
f,.,[gB J(.vT .....yT_p(B))l
and
m-1 ?
(2.15) of(T-p(m) 1) (W7
B* (B B* B* -
E (f,,,[ii;;](yT ..--.yT_p(B))

ArgB*y(yB? B+ 2
AR

Since the leading expressions in (2.14) and
‘2.15) can he calculated independently of

:he hootstrap, we see, as bhefore, that the
pootstrap's only contribution is to compare
forecasts and that psuedo-data at times later
than T are not needed for this.

All of the arguments given above also apply to
the case of vector autoregressions, and thus
also to the case of autoregressions with exo-
geneous variables, provided that endogeneous
and exogenous variables are simultaneously
forecasted from a combined vector autoregres-
sion, They also apply if all needed values

of the exogenous variables are assumed to be
nonrandom and known, as in Freedman and

Peters (1984)

3. THE SIZE OF (2.12) IN SOME EXAMPLES

Again using an obvious notation, let us re-
arite (2.5) as

(3.1) o2 = o2+ ER;

The anatogous formuta for the hootstrap esti-
mate (see (2.10)) can be written

'2 Az * *2
(3"-) um'T - am(T'p) +E Am,T
For estimating °£,To the practical signifi-

cance of having an estimate E'A??m of Eﬁ%’r de-

pends upon the size of Eﬁ%'T relative to o% and

to the root mean square estimation error of the

large-sample estimate G%(T-p) of o%,
rmse(62(T-p)) = (E(G2(T-p) - 02)231/2 |

in Table (3.1) below, we present Monte Carlo

estimates of the ratios Eﬁg'T/a% and

(3.3) EAZ 1/rmse(83(T-p))

for the observation length T=25 for some gaus-
sfan AR(2) processes

(3.4)  yp =8+ drypy *epyeal t ey
utilized in the study of Ansley and Newbold
(1981). We note that these quantities are
retevant for the estimation of o, 1 as well,
since, for example,

om,1 = In(1 + (A2 rraln1/2
which is well approximated by

opll + % (EAZ 1/02)}

if (Eﬁ%'T/c%)z/s is negligible (Taylor

polynomial approximation). For each pair of

«
v A
',’t,f- . N

coefficients ¢;, ¢2 in the Table, we

‘.,l.
ey
.

estimated the quantities €42 ¢ and
T

_ 8
L)

,
s

PSS
n "

A

rmse(é%(T-p)) as the mean of sample estimates
obtatned from 1000 stationary pseudo-Gaussian
series satisfying (3.4) with § = 0, using least

squares to estimate &, ¢y and ¢5. (The IMSL ._tf:i
ALY
pseudo-Gaussian generator GGNML was utilized.) .Lxﬂ}.
The tabled results suggest that estimation of - _.:
Eﬁg’T is of V1ittle consequence when '}?}}
N

? » W

52(T-p) 1s used to estimate of.
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Table 3.1 Values of Eﬁg'T/og and (3.3) for

M=1, 2 and 5, for selected Gaus-
sian AR(2) processes,with T=25,

" 92 m €82 1702 (3.1)
40 -5 1 .01 .02
2 .01 .01
5 .00 .01
80 -85 1 .01 .05
2 .04 .08
5 .02 .02
80 -6 1 .03 .04
2 .02 .03
5 .02 .04

We have not included results for those of
Ansley and Newbold's AR(2) models whose
characteristic polynomials have a root in
the annulus 1,0<[z[<1.24. With T=25,
simulations for such models produced large
numbers of explosive series {the esti-
mated characteristic polynomials had a root
in |z]<1.0).

4. CONDITIONAL MEAN SQUARE FORECAST ERROR

In the preceding sections, we investigated un-
conditional mean square forecast error. How-

ever, it is the error associated with predict-
ing a future point on the observed sample

gath (realization) which usually ¥s most of
nterest.

4A. Mean Square Errar Formulas

Since, by (2.1), the value of yrun
depends on the data yj,...,y7 only through

the last p observations, it is easy to check
that we can simply reinterpret the expectation
operator E in (2.5) as designating expectation
conditional upon YTo¥Talseeer¥To(p41) and

thereby obtain the fundamental decomposition
of the mean square forecast error conditional
upon the observed sample path., The
YTo¥ToloesesYT-(p+l) in the second term on

the right in (2.5) are now held constant,

with the result that this second term simpli-
fies into a linear expression 1in the higher
order moments of 8 - 8, The mean-zero first
order case is illustrative: If

yt = oyg-1 +ex  (920) (4.1)
with ey, t>1, i.1.d. having mean 0 and vari-

ance 02

» and with e, independent of y;_y when-
ever k>0, then f 141 (y;) = ™. From the

the Taylor polynomial expansion of fm[31(yT)
about ¢ = ¢, we have

fal® UyT) ~ Fulel(y7) =

m «d A
T ZH Cm, #™ 36 - oM, (4.2)

where Cj q = m(m-1)...(m-J+1}/j!.

Taking the mean square of (4.2) conditional
on y1, we obtain

Ef[81(y7) - foled(yy)? =

(4.3)
To estimate (4.3) via the bootstrap, we re-
place y; in (2.11) by yy (ideally gener-
ating the pseudo-data tn such a way that y? =
YT, but see 4B. below). By analogy with
(4.3), we then have

E*(F e “T0y1) - o820y y032 =

m ~ ~
I | O, B2 - B

(4.4)

The efficacy of the bootstrap procedure {s
usually related to the extent to which the

distribution of 8™ 8 resembles that of % -0 and

to how insensitive this latter distribution Ts
to the true parameter value 8. However, for
our problem, the situation iTlustrated by (4.3)
and (4.4) obviously holds generally: the ex-

pected mean square of fmfg](yr,....yr_p+1)
- fm[gj(yT....,yT_p+1) conditional on
YToeeos¥T-ptl depends on the true value

of 8 as well as on the distribution of § - 8,
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suggesting that the quality of the bootstrap are uncorrelated with one another, satisfy -
approximation will be influenced by the ac- ~ 2 2 S
curacy of & as an estimate of 8. . Eag = Eeg, and each a, is uncorrelated RSy
with yeug for all 1. (This equation is :{-:-'.'

--F"
sometimes called the time-reversed representa- iy
48, Bootstrapping Conditional Sample Paths - tion of the process yp.) We can therefore use, ._.
It would seem 1i{ke an attractive idea, when, as as an estimate of 4, the value ¢ minimizing F..'\'
in this section, statistics associated with _ .\:;’;
h buti ves - : - S
the distribution of y, conditional on yy,..., Xhl (yy - ’Ytﬂ)z' then define a, = yy - 23
YT-p+1 are being approximated, to generate :-.‘:-“
pseudodata y: for the bootstrap in such a LTSN t=l,...,T-1, draw randomly with re- S

way that y; = y¢ holds for T-p+icteT. placement from this set of residuals (after L,\‘
RSN
For example, 1t would be appealing to estimate centering about their sample mean) to obtain Do
* H ¥, and, finally, define y} =
¢* in (4.1) from sample paths passing through aj,...0a7.] and, finally, define y1 = yy A
T and o

L)

To illustrate a first approach to accomplishing * o~ x * 4.7 >
this, suppose we have bootstrapped residuals Yt T $¥p4l * g (4.7) =
* * a for t = T-1,...,1, thus generating a pseudo- ':f'_-‘::
€p+ls-++se7 from an estimate ¢ of ¢ in (4.1). dota sample'patr'u éontaining Tt procedure s
To generate y: satisfying o

> 7t

is appropriate only if the a, defined by

y; = $y{_1 + e: , 26t<T

1%

(4.6) are i.i.4., since this is a property
with y; = y1, we could obviously set yy = y?

of the a{. Wy
and recursively define We will now show, however, that the white .::::r-:
vt - 3‘1y€+1 RN noise noise series a; can be independent only .::-:'.:
if the cumulants of y¢ {(or, equivalently, ﬁ\.
l<t<T-1 . (4.5) those of ey) are those of a Gaussian series, '
In this case, however, y; fs neither inde- f.e., are 0 for orders higher than 2. Indeed, o

pendent of nor even uncorrelated with e:ﬂ let «. denote the r-th order cumulant
r

for 1<t<T-1. Thus the bootstrapped
data fail to have a basic property of the cum(er,..e,ep) of e for some r>2 (assumed

original data, and the consequences of this

to exist). Since, from (4.6),
for the estimation of 3 from yf....,y?

are an unresolved issue. Furthermore, (4.5) Yt = zj,o ’jat*zj X
is n i [} . ‘
umerically unstable when |¢|<1 it is easy to see that the ap's are independ-
When the serfes y, is stattfonary, a second ap-
proach, which avosds the difficuities Just en- ent 1f and only 1f ay s independent of y.j ]
countered, would seem to recommend itselif. To . T
11lustrate with the first order case again, ;g: 53;313::; ClI"r'\‘(;his case, the r-t)hw;)r]‘l- be oS
if y, satisfying (4.1) is stationary, then it tr YeajeereaYtay sl
ts easy to verify that the random variables a; 2;":27 g:;;;::?:: (()}QZS;"?;":E) fg;rtgilfu?ﬂa- -‘:'\-'.
- » ,"' -~
defined by particular, since we can write PO
Ty
ap = yp - W (4.6) - !
Ytel = Ceep * 0 Zjao ety .
o
e L A T A T T T e i R i s
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and

ag ® ¥y - ¢yp+l = - degq)
2 -
(1= 02 T, o #lerys

we are then led to

0

]

cum(ag, YeslseeosYtsl) =

¢ cum(eg4lseeerPpse])

+

(1 - 9 2)r-1 2;‘0 Ojrcum(et_j....,et_J)

= (o7 -0y -0t L

Since 0<|$|<1, it follows that x. = 0, as as-
serted. If the distribution of ey is deter-

mined by fts moments and if all moments ex-
ist, then ey, and hence also y;, is therefore

Gaussian, For Gaussian time series, however,
pseudo-Gaussian Monte Carlo simulations seem
1ike a more natural device to use to generate
sample paths than the bootstrap.

We conclude from the preceding discussion
that generally satisfactory methods are
lacking for obtaining hootstrap sample paths
through the final observations YTapalosses¥Te

Remark. The calculation used above, showing
that assuming one-step forward and backward
prediction are 1.1.d. is tantamount to assum-
ing that the ohservations are Gaussian, can
be extended to stationary autoregressive
processes of arbitrary order. A much more
general assertion is made in Result 2.2 of
Donoho {1981), namely, more that a strictly
stationary non-Gaussian time series with
finite second moments can have (ignoring re-
scalings) at most one invertible representa-
tion as a moving average of an i.i.d. white
noise process. Some important details are
missing in the proof which is given there,
however.

CONCLUSTON

Our results suggest that the estimates of
mean square forecast error which result from
the bootstrap procedure proposed by Freedman
and Peters are not significantly more re-
reliable than the large sample estimates,
which are t11-behaved, in small samples.

This does not exclude the possibility

that other methods of bootstrapping

these statistics could prove useful,
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THE EM ALGORITHM IN TIME SERIES ANALYSIS

R. H. Shumway

Division of Statistics
University of California
Davis, CA 95616

The EM algorithm is ideally suited for maximizing likelihood functions arising in
time series models involving stochastic signals embedded in nofse. Successive steps
involve simple regression computations, and the likelihood is nondecreasing at each
step. Furthermore, the algorithm provides a simple and natural approach to handling
problems caused by irregularly observed time series data. The simplicity of the
approach is illustrated by applying the EM algorithm to the problem of estimating
parameters in the state-space model. Examples involving biomedical data, economic
data and data collected from the soil sclences are presented to illustrate the
general procedure. A review i3 given of past experience in applying the algorithm,
using both minimally configured microcomputers and large-scale mainframes.

1. INTRODUCTION

One of the benefits resulting from the explosive
growth of microcomputer technology is that
research workers now have easy access to
computer programs for applying some of the
computer intensive methods of time series
analysis. Two examples are the Kalman filtering
and smoothing recursions for the state-space
model and iterative methods for maximum
likelihood estimation uaing Newton—Raphson or EM
algorithms.

A very general model which subsumes a whole
class of special cases of interest in much the
same way that linear regression does is the
state-space model introduced in Kalman (1960)
and Xalman and Bucy (1961). Although the model
was originally utilized in aerospace related
research, it has recently been applied to
model{ing data from economics (Harrison and
Stevens (1976), Harvey and Pierse (1984),
Kitagawa (1981), Kitagawa and Gersch (1984),
Shumway and Stoffer (1982)), medicine (Jones
(1984)) and in the soll sclences (Shumway
(1985)).

The general form of the multivariate state-space

model involves assuming that the rxl observation
vector ye = (Y1es+++»Yrt)' can be written in the
form

Ir = Apxp + vy (1.1)

for t=1,2,...,n, where Ay i8 an rxp design
matrix which specifies how the unobserved state
vector xp = (X]¢,X2¢se+»,Xpt)’ can be converted
into the observation vector y; at any time point
t. The additive rxl observation nolses v; are
assumed to be independent with Evy = 0 and
covariance

R =~ E(vpvy) (1.2)

The form of (1.1) 1is almost identical to the
standard regression model with xy cortesponding
to a vector of random regression coefficients.

The behavior of the state vector x, is
determined by its initial value xj, and the
state equations

X s Oxey tu .3

defined for t=1,...,T, where & is a pxp transi-
tion matrix and w¢ s another independent model
nofise process with Ewy = 0 and rxr model noise
covariance matrix

Q = E(wpwe) . (1.4)

This 1s, of course, closely related to the first
order autoregressive model defined previously,
although no restrictions are imposed to
guarantee stationarity. The specification is
completed by assuming that the initial vector xg
has mean p and covariance matrix

L =B(xp~ pxo- '~ (1.5)

An important feature of the multivariate
state~space formulation is that it provides one
with a great flexibility in tailoring models to
special circumstances. For example, suppose
that we obsgerve

Yo = x¢ + v,

where the unobserved serfes x; {8 the second-
order autoregressive process

Xt = $1%X¢-1 + $2%Xe-2 *+ zyp -
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This autoregressive "signal plus noise” model
can be easily put into the state—space format
(1.1) and (1.3) by wr.cing

xt
ye = (1,0) ( ) + v
Xe-1

()= (906

. with the obvious identifications for At’ x,

® in Equations (1.1) and (1.3). Many different
specific models can be expressed in state-space
5 form as we shall see in later sections.

where

'

and

P

The introduction of the state-space approach as
a tool for modeling data in the social and
blological sciences requires that one be able to
handle the model identiftcation and parameter
estimation problems since there will rarely be
a well defined differential equation describing
the state traasitions. Furthermore, we would
like to be able to handle general versions of
(1.1) and (1.3) which provide for the possi-
bility of missing data which occurs so often in
the biological sciences. The problens of
interest for the state—space model relate to
estimating the state-vector x; and the unknown
parameters u, L, ®, Q and R. The problem of
estimating xp recursively under the assumption
that the parameters are known was originally
golved by Kalman (1960) and Kalman and Bucy
(1961) and is the celebrated Kalman filter.

2. FILTERING, SMOOTHING AND FORECASTING

The problem of estlmatlng,zt in the state-space

that the linear estimator with minimum mean
square error i{s the expectation conditioned on
the observed data b ATEEN A In order to

- model (1.1)~(1.5) can be approached by noticing

specify this procedure, consider the general
condit{onal nean

Xp = E(Xe|YeseeerYa)s (2.1)

defined as a function of t, the point at which
we need the value, and the span, s, of data
which 13 ugsed to determine the estimator. The
general mean squared covariance function of the
estimator (2.1) will be denoted by

Peu = E[(xe = x¢)(xu = %) ' 1y1se-e0ys]- (2.2)

Several cases of interest can be distinguished
depending on the span of the data and the point
t at which the estimator is desired. For

example, the one-step predictors x:—l are the
Ralman filter estimators whereas the conditional

means xz, baged on the complete data span
Y1s+++,¥YT, are the Kalman smoothed estimators.
Forecasting can be defined as the computation of

xI for t>T.

The computation of the quantities in equations
(2.1) and (2.2) is a formidable undertaking 1f
approached by stralghtforward methoda. The
dimensions of the vectors specified by the model
are at least rT x 1 or pT x 1 where T denotes
the number of data points observed in time.
However, the recursiong developed by Kalman
(1960) and Kalman and Bucy (1961) require only
that matrix computations of order rxr or pxp be
performed recursively to develop the conditional
means and covariances. The process of finding
the Kalman filter (xf~1) and smoother (x[)
estimators again involves using the linearity
assumption to determine the minimizers of the
mean square errors Pfyl. The derivation
requires using the projection theoren
recursively in conjunction with the model
equations (1.1) and (1.3). The reader is
referred to Jazwinskl (1970) or Anderson and
Moore (1979) for details.

The calculation of the Kalman filter estimators
proceeds by the so-called forward recursions

27 - axfld (2.3)
t t-1 t-1
K o= xg o+ Reye - Aexe ) (2.4)

for t=1,...,T with 58 = p. The one-step fore-

cast 5;-1 is a strict update of the previous
estimated value whereas the best estimator
involving current data 5£ is a wetghted average

of gi—l and the error that one makes in pre-
dicting y¢. The pxr weight or gain matrix K¢ is
defined as
t-1," t-1," ~1
Ry = Pee Ac(AePrp Ag + R) T, (2.5)

where the covarifances are updated recursively
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using the recursions

t-1 t-1 '
Ptt - th-.l’t-lp + Q (2 '6)
and
t t-1 t-1
Pee = Pee - KeAe Pre 2.7

vith pdy = .

If the estimator for x; is to be based on all of
the data yy,...,y1, we need the Kalman smoother
estimators. These can be developed by solving
successively the backward recursions for
t=T,T-1,...,1 using the equations

-1 , -
Ba-afllrieai - ee
where
t-1 frpt=1y-1
Jea1 = Peo1,e-1® (Pee’) - 2.9)

The mean square error covariance for the
smoothed estimator satisfies the recursions

T t-1 T _t~1y.'
Pe-1,t-1 = Pe-1,e-1He-1{Pee~Pey )Je-1 (2.10)

If a forecast is needed it 18 clear that one
only needs to extend the forward recursions
(2.3)-(2.7) into the future under the couvention
that K¢=0 in (2.4) and (2.7).

The Ralman filter and smoother recursions give a
convenient means for calculating the conditional
expectations which are of greatest interest in
solving problems in smoothing and forecasting
for time series. The data are not required to
be regularly spaced so that the smoothed

conditional on xpy, where x:-l is defined in
(2.1). The innovations, conditional on
F1seee,¥t-1s have zerp means and covariance

-1,
Et - Atptt At +R . (3-2)

The log likelfhood for estimating the parameter
8 = (©,Q,R) is essentlially

e _1 T 1 T -1
logL(Y;9) - E-Tflloglzcl- f'tflstzt Epr 3.3)

which 1is a highly nonlinear function of the
unknown parameters. The usual procedure is to
fix xo and then develop a set of recursions for
the log likelihood function and its first two
derivatives. Then, a NewtonRaphson algorithm
can be used to successively update the parameter
values until the log likelihood (3.3) 1is
maximized. This approach is advocated, for
example, by Gupta and Mehra (1974), Ansley and
Kohn (1984), or Jones (1980).

We give a simpler approach here, based on the EM
or expectation-maximizaiion algcrithm of
Dempster et al (1977). The EM algorithm was
adapted to this time series model {n Shumway and
Stoffer (1982). The EM algorithm proceeds by
successive maximizing the current conditional
expectation of the complete (but unobsgerved)
dats log likelihood based on X = (xg,wj,s«.,%,
Visere,vp) conditional on the incomplete (but
observed) data Y = (y1,...,yr). This complete-
data log likelihood, given in Shumway and
Stoffer (1982), involves the parameters

8 = (u,r,%,q,R) in a convenient form but cannot
be maximized directly since the x; process is

}i estimators x{ can be used in lieu of missing not observed. However, 1f the current value
o values (see Section 3). The main problem which of 6 18 64 and Ejy denotes the expectation under
o remains, however, is in specifying values for 683 the EM algorithm proceeds by maximizing
b the unknown parameters p, &, ®, Q and R which
- are needed in order to apply the recursions. Q(9184) = Ey{log L(X,0)]Y] (3.4)
()
3. ESTIMATION OF PARAMETERS at each step. Equation (3.4) can be written in
. terns of the Kalman smoothed outputs. The maxi-
;: The estimation of the parameters involved in mization of the resulting function with respect
:: specifying the state-space model (1.1)-(1.5) can to the parameters &, Q and R then {s exactly
-, be accomplighed using maximum likelihood if we analogous to maximizing the usual multivariate
-, are willing to assume that xpy,w;,...,wr and normal likelthood fuanction and ylelds the
[ -, V1s+ee,¥r are jointly normal and uncorrelated regression estimators
it random vectors.
= S(1+1) = Se(1){Sp-1(O)}7L, 3.5)
: The usual likelihood is the "innovations” form
‘-? of Schweppe (1968), which involves writing the .
- joint likelihood of the innovations QUi+1) = T71{8(0)-8¢(1)(S¢-1€0)) 1S (1)}, (3.6)
- t-1 where
er = Jr = Aexe 3.1
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5.() = z (P 3.7)

t,t-] —t—tj)
for 3=0,1, and

. N '
R(1+1) = T 1 5 (egey + AtP:tA . (3.8)
tel
with
€F = yp = Aexp - 3.9

The term involving p and £ has only a single
observation and we arbitrarily fix I and take

i+l = Xp (3.10)

The Kalman smoother can be used to compute all
the terms in (3.7) except S¢(1), which involves

Pz,t-l = cov(xe,Xe-1|1seeenyr) ¢+ (3.11)

Shunway and Stoffer (1982) have given the_follow-
ing backward recursions for determining Pt ¢-1
for t=T,T-1,...,2. The basic recursion uses

T t-1 T t-1 '
Pe-1,t-2"Pe-1, t—xJ:—2+Jt-1(Pt Jt=1"0Pt-1 t-1)T¢-2,
(3.12)
where we start with

T T-1
Pr,r-1 = (1 - KqAr)oPr_) 1-1 - (3.13)

The overall procedure can be regarded as simply
alternating between the Kalman filtering and
smoothing recursions and the multivariate normal’
maximum likelihood equations (3.5)-(3.10). We
sunmarize the iterative procedure as follows:

1. TInitialize pg, %, G0, Rp and fix X.
2. Use the Kalman recursions (2.3)-(2.9) to

calculate x{, Pzt and l"r St=1s

3. Evaluate the log 1ikellhood (3.3).

4. Update parameters to up, o1, Q;, R} using
Equations (3.5)-(3.10).

5. Return to step 2.

One of the advantages of the EM algorithm
results from the simplicity of standard multi-
variate normal calculations which depend only on
output from the forward and backward Kalman
recursions. Successive steps of the form (3.4)
never decrease the likelihood function and one
18 guaranteed to converge to at least a local

maximum of the log likelihood function under
fairly mild regularity conditions (see Wu
(1984)). While the convergence rate of the EM
algorithm is somewhat slower than that possible
with Newton-Raphson or scoring algorithms (in
the neighborhood of the maximum), one may be
able to avoid the large divergent step correc-
tions which are characteristic of these latter
two procedures in the multiparameter situation.

An attractive feature available within the
state-space framework relates to the ability to
treat series which have been observed irregu-
larly over time. The EM algorithm allows one to
have parts of the observation vector y, missing
at a number of observation times without invali-
dating the computational procedures described in
the previous two sections. An especially simple
procedure results for the special case where the
unobserved and observed parts of the error
vector v, are uncorrelated.

Suppose that at a given step, we define the par-
tition of the rxl observation vector

Y ™ (Y(l)'. (2)')', wvhere zél) is the ry x 1

observed portion and ziz) is the r) x 1
unobserved portion leading to the partitioned
form

1 1
EOINAC o
- X + (3.14)
4 L@ oD
vhere A(l) and Ag ) are r] x p and r) x p

natrlcea and

1
!E ) R11 Rp2
cov - . (3.15)
2
!§ ) R21 R22

Stoffer (1982) established that Equattons (2.3)-
(2.10) hold for the missing data case given
above if one makes the replacements

Z; - (xﬁl)',gj) and A; - (Agl)',o‘), and Ryg =

R21 = 0. That is, if y¢ is incomplete, the
filtered and smoothed estimators can be calcu-
lated from the usunal equations by entering
zeroes in the observation vector y, where data
is missing and by zeroing out the corresponding
row of the design matrix A¢. This leads to the
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smoothed estimators x; ° and the covariance

functions Pgr), Péf%_l in the missing data case.

The maximum ltkelihood eatimators, as computed
in the EM procedure, require that one take the
conditional expectation of (3.4) under the as-
sumption that y, is incompletely observed. Now,
defining the incomplete data as

41) - (zil),zil),...,!fl)); the expectation of
the third term can be computed by conditioning
first on both Yf{l) and x. and then on Y1) which
leads to (cf. Shumway and Stoffer (1982),
Shumway (1984)) )

-1 N \J
R(1+1) = n * I D¢GyDy (3.16)
tel
where B
eV cVp
Gy = (3.17)
1]
\rell) re{Dr'+rpy.
with
F= RZIR]} . (3.18)
-1
R22.1 = R22 = R21R11R12 , (3.19)
and .
L] L]
6t = e e + AP L (3220
where
ef =y - AT, (3.21)

The matrix Dy is a permutation matrix which
reorders the variables in their original form.
This i3 necessary because the application of
(3.17)-(3.20) requires that the variables be
ordered 8o that the observed values appear in

1
7V

A simplification introduced in Shumway and
Stoffer (1982) is to assume that the errors
relating the unobserved and observed components
are uncorrelated, i.e. Ry = 0, so that the
correction (3.17) reduces to

ot o
G = . (3.22)
0 Rz2

If the vector observation has all components
missing, the correction reduces to adding R from

the previous {terate.
4. EXAMPLES
4.1 An Irregularly Observed Biomedical Series

In order to give an {llustration of an incom—
plete series, consider the problem of modeling
the level of several biomedical parameters
monitored after a cancer patient undergoes a
bone marrow transplant. The data in Figure 3.1,
presented by Jones (1984), are measurements made
for 92 days on the three variables log(white
blood count), log(platelet) and HCT(hematocrit).
Approximately 402 of the values are missing,
with the missing values mainly occurring after
the 35th day. (The nissing values are shown
along the time axis on the plotted series). The
main objectives in this example are to model the
three variables using the state-space approach
and to smooth the data. According to Jones
(1984), "Platelet count at about 100 days post
transplant has previously been shown to be a
good indicator of subsequent long term
survival.”

W 4035 e |

{ 1
10 s
BONE MARROW TRANSPLANT- LOG(WHITE BLOOD COUNT)
Mre 53737 e L0

t 1 1 | 1 1 1 1 1
19 v

BONE MARROW TRANSPLANT- LOG(PLATELET)

M 365 MM B

|
10 MYS
DMONE MARROW TRANSPLANT~ MCT

Figure 1 - Bone marrow transplant data (Jones
(1984)).

The simple state—space model with three coapo—
nents was chosen with the observed log(WBC),
log(platelet) and HCT denoted by yyp, Yot
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and y3; and the unknown true levels denoted by 4.2 signal Extraction for Soil Sciences Data -$\$
. X1es X2¢ and X3,. The true vector process Yo
- satisfies the state equation As an example of a simple signal extraction =-
B B _ problem consider the following example from -
g x 981 -.035 .008\ (xy .. [ Shumway (1985) involving salt content values e
¢ 1t 1,t-1 1t ey
) meagured at intervals of one meter over a line A
2“: x3e| = +059  .925 006 | xp p-1| + [wae transect. Figure 3 shows the average of five :.‘,'_A"
. such transects (parallel samples) taken from o
N X3¢ -1.078 1.811 .823/ (x3 ¢-1 w3 Morkoc et al (1984). g:-_;
' ) P
where the transition matrix was extimated after e .78 W 710 -
30 fterations of the EM algorithm. The state Ve /\_’/'V\._v Fr"
" and observation covariance matrices were esti- / K - ‘-_."q
. . \ .
s mated as A 7T g NG
:' ~ ~ n 1 PN - ) * -':‘d
a 014 -.002 .013 007 0 0 e 1 L L e
Q={-.002 .003 .027{,R= 0 .017 0 MEAN SALT (EC 13-38 €} CONTENT .. .

\.013 027 3.485 [} 0 631 Figure 3 - Average salt content over five

transects (1 pt = 1 m). (Morkoc
Again, the coupling between the first two series et al (1984)).
and the third series is relatively weak. The
regression relating x3.(HCT) to the other two
series seems to be fairly strong, i.e. It i{s plausible that the salt content can be
represented as a non—stationary trend function
superimposed on noise. We might assume (see

x3¢ = ~1.078x) ¢-1+1.811x) ¢-1+.823x3, ¢-1+W3;
Shumway (1985)) that the observed salt content

The smoothed values, as evaluated using the
Kalman recursions, are shown in Figure 2 below.

The approximate standard errors PIL of the

at the spatial point s, say y,, can be
represented as

Vg = %g + vg (4.1)
interpolated missing values in the latter parts
of the series are in the ranges .11-.13, .08-.09 .,

where xg 1s the smooth trend function and vg is
and 1.7~2.0 for the three serfes respectively.

the irregular white nolse component with

SEACOOOE B JOTANNN

variance 03. The basic objective is to produce

g M 40 e 133 an estimator for the nonstationary trend R
. function xg. In order to specify smoothness "
N S T constraints for the trend function xg we might N
.. assume that the gsecond difference (derivative)
: is small, say
. " A1 i 1 L L (] 1 L 2
19 wrs Vixg = wig (4.2)
BONE MARROW TRANSPLANT- SMOOTHED LOG(WHITE PLOOD COUNT)
. vhere V 1s the usual difference operator and wig
. I 5.2 M 0056 2
S, . is a noise with variance oy,. There is an ohvi~
<. ous similarity here to spline smoothing (see
. Wecker and Ansley (1984)). Now, since
. i N W L1 n szg - xg = Zx;_l + Xg-2 (4.3)
~ 19 s
- PONE MARROW TRANSPLANT- SHOOTHED LOG(RLATELET) it 18 clear that by defining the state vector
. . 5. Xg = (xg,xg-1)", the model in Equations (4.1)
. Wie Dum e Dan and (4.2) can be written in the state-space form
B E V . .
~ N . *s
0 RSN k yg = (1,0) : + vg (4.4)
.‘: 1 ) 11 i i 1 1 1 Xg-1
= 10 WS
PONE MARROW TRANSPLANT~ SMOOTHED HCT where
Ca Xg 2 -1\[xg- wig -
*. Figure 2 - Smoothed bone marrow transplant data - + (4.5) .
:. Xg—1 1 0/\xg-2 0 e
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j and the obvious identifications can be made in
.. (1.1) and (1.3). The transition matrix & is
fixed in this case and we have only to estimate
the variances of and of assoclated with the
. obgervation and model noises respectively. The
- 2
;: estimator for oy comes from qy in
CY _l L] L] 1]
. Q=T (Sp(0)-5¢(1) -0S:(1) 495;_1(0)0 ) (4.6)
-
b where & is the fixed transition matrix. The
. estimator for 03 follows directly from (3.8) as
- usual. The final estimators for the variances
. ate 52 = 102, 52 « .021.
.. T

The smoothed values xg4 under this model are
plotted in Figure 4 and it is clear that the
smoothed values follow the major turns in the
data quite well. The resulting smoothed series
has a prediction standard error of .l16.

A
s

Ml 5,540 R L7IXN

[N
PR

o
1 1 1 1 1 A 1 1
3

SHOOTHED MEAN BALT CONTENT(EC 13-38CM)

Figure 4 - Smoothed salt content using (4.1) and

(4.2) with 85 - .102, 83 - .021.
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4.3 Forecasting and Seasonal Adjustment of
Economic Series

- The finherent flexibility of the state-space
.:_ model can be exploited for developing additive
o models for economic time series. The use of
.;~ state-space methods for analyzing additive
o models of importance in economics has been
. proposed by Kitagawa (1981), Kitagawa and Gersch
(1984) and Rarvey (1983). As an example, con~
i sider the quarterly data on earnings-per-share
-} shown in Figure 5 for the U.S. company, Johnson
Ny and Johnson. The general character of the
A series seems to emerge as an exponential trend
X with a gseasonal kind of oscillation superimposed
X on this trend; the seasonal oscillation tends to
repeat every four quarters.
. L I ] [P N ]
'\; N
,:.' ,J\ E
. //\’
]
1 1 A4 ) i ' I W §
—~ (K] K]
| \‘ QUARTERLY DATA- JOHNSON & JOMNSOM T-QUARTER FORECAST
:’ Figure 5 - Quarterly earnings per share (1970(4)
- to 1980(1) and 7 quarter forecast
:, for Johnson and Johnson.
"y

In order t- develop an additive model for this
particular kind of data, suppose that we regard
the observed series ‘y, as being composed of
trend, seasonal and irregular components,
denoted by X3, %3, and v, respectively. The
obgserved data can be modeled as

Ye = Xjp + X3¢ + v , 4.7

where the exponential trend component might be
modeled as

X1t = $X1,¢-1 *+ V¢ (4.8)

where ¢>1 represents the growth rate. The
quarterly seasonal component might be modeled as

X2t * “X2,t-1 " X2,t-2 - X2,¢-3 *+ w2, (4.9)
reflecting the fact that the sum of the four
quarters should be approximately 0 for the
seagonal factor. The problems of interest for
the model can be reduced first to estimating the
parameters and then the unobserved components
x1¢ and xj,. One would also like to be able to
forecast y.. A problem of some interest in
economic applications is in estimating the
series with seasonal effects excluded, 1i.e.

- e e

L nd

(*Ic + x;t), sometimes termed seasonal

ad justment.

The model specified by (4.7), (4.8) and (4.9)
can be put into state-space form by defining the
state-vector x; = (‘lt"Zt-xZ,t—lv‘Z t-2)', 8o
that the observation FEquation (1.1) comes

X1e
X2t
ye = (1,1,0,0) + v (4.10)
x2,t-1
"2,;-2
with the state Equation (1.3) given by
X1t ¢ 0 0 0fix ¢ vie
2t 0 -1 -1 -1fixp eq| |¥2e
- + (4.11)
x2,t-1 0 1 0 0f]|x2,¢e-2 0
xz't_g o 0 1 0 X2 t-3 0
where
q11 O 0 0
0 q22 0 O
Re=r, Q= (4.12)
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S gives the two covariance structures. Harvey The log likelihood converges nicely to a local
o (1981, p. 180) shows that this model with ¢=1 maximum although, at the tenth {teratfion, the
is essentially an ARIMA (0,1,1) x (0,1,1)4 which process was stopped and the seasonal and
has been applied to accounting data by Griffin irregular component variances were incremented
(1977). strongly in the directions that were suggested
> on examination of previous iterations. The
Al The computational wodifications required for final value of 1.037 for the parameter ¢ implies
N this state-space model are winor since qp; and that the exponential growth rate is
4 q32 can now be obtained as the first two approximately 3.7 percent per quarter. &
S diagonal elements in Q defined by (4.6). The ‘o L
estimated transition parameter ¢ 1s just the The values of the parameters given in Table 1 o
’ ratio of the upper left corner elemeats of S (1) were then used to estimate the trend xj, and -
\ and S¢.1(0). That is seasonal components x3y of the model. These are .'J‘..
N shown in Figure 6 and we note that the estimated S
~ [s.)] - " vak
oy O(L+l) = t 11 (4.13) trend plus seasonal,” say xj, + x3., produces ..
n |5t—1(°)hl * credible version of the original series. The Sy
n,’ estimated trend might be taken as a seasonally R !
Y where [A]14 denotes the {Jth element of the ad justed version of the seriles. 3
matrix A.
. e 28 0w o
Table 1 shows the successive estimators for the
- four parameters as applied to the Johnson & ™
N Johnson data. ¢
- Table 1 - Successive parameter estimates for
° earnings-per-share for Johnson & T N T T T D |
* Johnson using additive model ]
ESTIMATED TREND- JOHNSON & JOHNSON
- Iter é a1 922 ) 2%0gL [
) ] LR o
1 1.028 .010 .010 .033 -93.96
2 2 1.03 .012 .029 .062 - 5.31 T
e 3 1.037 012 047 .068 3.55 N ST T S S N W 1
< K]
‘-:: 4 1.037  .0LL  .061 .066 6-26 Figure 6 - Estimated trend, x{t, and "trend plus
g
e 5 1.037 .011 .072 .062 7.3 seasonal,” xjp + X3y, for the earnings data.
\y 6 1.037 .00 .080 .057 7.85
A fundamental question of interest here would be
7 1.037 .010 .085 .054 8.13 in producing forecasts for the series, say
8 1.037 .010 .088 .051 8.30 vy = xjp + %3¢
9 1.037 .010 .090 .048 8.42 for t5T. It is clear that adding the KRalman
smoother outputs for the first two components of
10 1.037 010 .092 046 8.50 5} will generate these forecasts and that the
mean square error for the forecasts can be com-
- 11 1.037 010 .097 .038 8.74 puted as
Ve 12 1.037 .010 .096 .037  8.77 (61)% = [Pre]ur + 2[®ee]rz + (Pielaz »
13 1.037 010 .096 036 8.78 T T
- where [Ptt]ij denotes the 1jth element of Py..
" 14 1.037 010 096 035 8.80 Table 2 shows a three-quarter forecast for the
second through fourth quarters of 1980 compared
- 15 1.037 .010 .096 .035 8.80 with the actual values. There seems to be quite
o
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Designing An Intelligent System for Spectral Analysis

D. B. Percival, A. Buja, R. D. Martin, E. 0. Belcher,
R. K Kerr, S. D. Yes, and C. B. Hurley

Applied Physics Laboratory (HN-10)
Department of Statistics (GN-22)
University of Washington
Seattle, Washington 98105

ABSTRACT

The design of a software package to help a user perform

spectral analysis is described.

1. Introduction

Spectral analysis is widely used in the engineer-
ing and physical sciences, but, because of its com-
plexity, there are many pitfalls to its successful
application. There are currently a number of
software packages that can do the numerical com-
putations that are required for spectral analysis,
but none of them offer extensive guidance for the
user. Recent developments in computer science
have made it feasible to construct intelligent
software in the form of expert systems that mimic
the actions of a human expert in such diverse fields
as medicine, geology, and computer installation.
Moreover, Gale and Pregibon[3] have made a first
attempt at constructing an expert system for sta-
tistical analysis, namely, the REX system for regres-
sion analysis.

Because of these developments and the recent
availability of powerful computer workstations with
high resolution graphics, we are developing a
software package on such a workstation to help
scientists perform spectral analysis. The research
questions that our project addresses are: 1) what is
a good way to incorporate intelligence into a
software package? 2) what help can a software
package provide a user for organizing the results of
a spectral analysis? 3) is it possible to develop a
systematic strategy for spectral analysis such that,
given a time series that may be regarded as a reali-
zation of a stationary process and given some or no
a priori knowledge on, the shape of its underlying
spectrum, no important features ot the data are
missed? and 4) what new tools for spectral analysis
are possible on a state-of-the-art workstation? In
this report we concentrate on the first two of these
questions.

2. Desired Features for an ldeal Software Package

What exactly do we feel is lacking in available
software for doing spectral analysis? For heavy
users of interactive statistical packages such as S
and ISP, one deficiency is a lack of a data base
management system. In the course of a spectral

analysis, a user can produce a large number of new
auxiliary data sets that are formed by manipulating
the original time series. (In a recent analysis of
some wind speed data, one user produced over 50
auxiliary data sets.) Keeping track of all these new
data sets is a real problem. It is a common experi-
ence amongst analysts to be unable to recall with
the passage of time where all the auxiliary data sets
came from. An ideal software package would pro-
vide some way to organize these data sets automati-
cally.

A second desirable feature is more extensive
graphical capabilities than current software pack-
ages generally provide. The availability of worksta-
tions with enough power to quickly update a graphi-
cal display (so-called real-time graphics) opens up a
whole new category of displays that a user would
like to have available.

A third area in which software can aid a user is
to provide help in the specification of parameters
for sophisticated methods such as robust fitting of
autoregressive models. Here the statistical metho-
dology has become so complex that even the
designers of the methods have difficulty in applying
them without constantly referring to their own
technical reports.

For inexperienced users, the main problem with
current software is the lack of in-depth help. An
ideal software package should do, guide, explain,
and even teach the techniques of good spectral
analysis. Loosely speaking, augmenting software to
provide such help is called making the software
more "intelligent”.

3. An Example of Spectral Analysis

In order to incorporate intelligence into spec-
tral analysis software, it is helpful to develop a
model of how a human expert does spectral
analysis. To focus our discussion below, let us
quickly step through an example of a spectral
analysis (the reader is referred to Priestley[8] and
Bloomfield[1] for a complete discussion of the sta-
tistical theory used here). The time series for our
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example is monthly average values of the daily
water flow of the Willamette River at Salem, Oregon.
We begin by examining a plot of the data versus
time (figure l1a). We note immediately the marked
cyclical behavior of the data. There is, however, a
problemn with regarding this series as a realization
of a stationary process, namely, there is much less
variability in the series at the low points of each
cycle than at the high points.

a: plot of Willamette River data
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Since the data are all positive, we might con-
sider looking at the logarithm of this data in an
attempt to stabilize its variance over time. (For
some purposes for which spectral analysis is used,
such a transformation would not be desirable even
if it did stabilize the variance; we assume that this
is not the case here.) This transformation is shown
in figure 1b. We see that the variability of this
series is much more uniform.

o T T T 1
[ 100 200 300 400
time (months)
o b7 plot of xy, log of Willamelte River data
i )
{ ]
i 1 \ .
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Figure 1: Harmonic Analysis of River Flow Data, I.
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Since the sampling time is one month, figure 1b
shows that the period of the phenomena is about
one year (as one would suspect from physical con-
siderations). This plot suggests that this time
series may be modeled by a harmonic process of
the form

Xe = px + é:‘wtcos(“’t‘)“’Bts'm(‘-’k‘” +e¢, (1)

where uy, K, {A;}. {B} and {w} are unknown con-
stants and {£,] is a zero mean stationary process
with variance a,g and spectral density function hy().
If {£;] were a white noise process, the spectrum for
}X;] would be completely determined by {4,], {B,3.

fwr], and o2

Our first task is to estimate K, the number of
sinusoids with distinct frequencies in the model,
and the corresponding w;'s. The standard way to do
this is to look for peaks in the periodogram of
{X, ~X{, where X is the sample mean. Figure lc
shows that there is one prominent peak in the
periodogram near the angular frequency with a
period of one year {n/6™.166677 radians per
month, indicated by the dashed vertical line). This
peak is 10 db above all other peaks, so we should
include a term in our model to account for it (if
there were any doubt as to the significance of the
peak, we could appeal to a formal statistical test
such as Fisher's g or Siegel's test[7]).

Besides the peak corresponding to an annual
period, there are numerous other bumps in the
periodogram that may or may not be due to other
sinusoidal components. If we assume that the
expected variation in the river flow is periodic with
a period of one year but is not necessarily
sinusoidal, we would expect to see peaks at frequen-
cies that are harmonics of n,/6. These harmonics
are indicated in figure 1b by vertical dotted lines.
We see that the second largest peak in the periodo-
gram does occur at the first harmonic (n,/3). There
are no other peaks that seem to be particularly
prominent. (Again Siegel's test can help us judge
the significance of questionable peaks.)

To see if we can identify some components that
may be hidden due to leakage from the dominant
peaks, figure 2a shows the periodogram for the data
after it has been tapered with a 100% cosine taper.
Again there are lots of bumps besides the dominant
two we have already identified, none of which seem
to be particularly prominent.

Based upon our examination of the plots in
figure 1, let's assume a model given by equation (1)
with K =2 and w; =kn,/6 for which {g;] is a white
noise process. This is a simple linear regression
model which we can fit to our data using least
squares. Figures 2b and 2c show the residuals from
this fitted model plotted versus time and offset
from the beginniug of a year, respectively. To con-
tinue the analysis of this data, we would carefully

study these residual plots to judge the adequacy of
our mode].

There are two comments we should make about
this analysis. First, the actions that we have out-
lined are not a literal record of what an expert did.
Some false starts and “snooping around” have been
removed. Second, for this time series, if our
assumed model were true, we would have only one
estimate for the spectrum (ignoring minor varia-
tions such as fitting the model by some criterion
other than least squares). For time series that
must be modelled by a purely continuous stationary
process (i.e., the spectrum is determined by a spec-
tral density function), there is a subjective element
introduced by the choice of such things as data
tapers, prewhitening filters, window smoothing
parameters, and order of autoregressive models.
These choices result in a wide variety of different
spectral estimates. Unless we have some external
information about a time series, there is no way of
telling which estimate is closest to the “truth.”
Moreover, since, to quote Tukey[8], "... most spec-
trum analysis is exploratory in character,” it is
often not the goal to pick one of these estimates as
the best estirmnate, but rather we want to look at
many different spectral estimates to try to under-
stand our data and to look for interesting features
in it.

4. Prototype Expert System for Spectral Analysis

Our first attempt to incorporate intelligence
into spectral analysis software was to develop a pro-
totype expert system. We built the system using
computer hardware and software available to us in
1984, namely, a VAX 750 with primitive graphics ter-
minals running under the 4.2 BSD UNIX operating
system with Franz LISP and OPSS5, a programming
language for a production system. Such a system
requires that the knowledge of an expert be sum-
marized in production rules of the general form "if
A, B, ... are true, then assert action C."” Our first
task was to extract the knowledge of an expert in
this form.

To do so, we followed an expert through the
analysis of several "typical” time series such as the
river flow data. We were able to come up with a
"script” that represented the decisions and actions
that the expert took at each stage of the analysis.
Each portion of the script was initially coded into
production rules. As an example, a production rule
that we could have included based upon the river
flow analysis is "if the data is positive and if the
variability of the series is proportional to the height
of the series, then make a log transformation.”

We learned several things from this exercise.
First, it is difficult to capture the expertise involved
in spectral analysis using just production rules.
Much of our script was purely procedural in nature,
and this was rather clumsy to code with production
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Figure 2: Harmonic Analysis of River Flow Data, II.

rules. For example, in the river flow analysis, once
we had noted the strong cyclical variation in the log
of the original data (figure la), there was a pro-
cedure that we foliowed: we identified the frequen-
cies of the sinusocidal components in the model
using the periodogram, fitted the model to the data,

and examined the residuals. We found it easier to
write some of the purely procedural parts of the
system in the C programming language.

Second, graphical displays play a critical role in
spectral analysis. There are many features of data
that are difficult to extract by a statistical measure
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but that are readily apparent to the trained eye. To
obtain this visual information from an untrained
user, the expert system was programmed to carry
out a dialog between itself and the user. It
presented a series of graphs to the user and queried
him or her about the presence or absence of certain
features in the graphs. [f the user was unable to
answer the system'’s questions, the system would
attempt either to help the user by supplying exam-
ples or to answer the questions by itself based upon
some test statistics. This approach exploits the
superior human visual ability to find structure in
graphs.

Third, rather simple automatic mechanisms
were found for keeping track of an analysis and of
the auxiliary data sets created during a spectral
analysis. The OPS5 code and C procedural routines
did their numerical work by calling task programs.
The collection of these tasks programs is by itself a
primitive system for carrying out spectral analysis.
For example, suppose the values of the log of the
river flow series reside in a data file called "Irf". To
taper this series with a 100% cosine data taper and
calculate a periodogram for it (as was done in figure
2a), we would give the following commands to the
UNIX operating system:

taper -p 1.00 Irf Irf.tpr

pgram Irf.tpr Irf.tpr.pgm
The tapered time series and its periodogram would
now be in the auxiliary files “Irftpr’ and
"Irf.tpr.pgm”, respectively. (The names of these two
files can be arbitrarily chosen.) Part of the action of
both commands is to place a copy of the commands
themselves at the end of a special file named
"hist.tsa". A list of this file at the end of an analysis
gives a complete history of all commands that were
executed during the course of an analysis.

In addition, the formats of “Irf.tpr” and
“Irf.tpr.pgm” are special in that they contain not
only data values but also a copy of the UNIX com-
mand that created them. A special task program
called "genesis” could then be evoked at any later
date to find out how these two auxiliary files were
created. Thus the command

genesis Irf.tpr Irf.tpr.pgm
would yield the output

irf.tpr: taper -p 1.00 Irf Irf.tpr

Irf.tpr.pgm: pgram Irf.tpr Irf.tpr pgm
This simnple automatic mechanism has proven quite
useful for keeping track of auxiliary data sets and
could form the basis of a more elaborate data base
management system. (A report that describes this
software system in detail is available upon request.)

The final lesson that we learned is that our
approach was painfully inadequate. The chief com-
plaint from those who observed the system in action
was that it was too rigid and did not allow the user
to “snoop around” easily when interesting features
of the data were displayed by the system: the script

became a straight jacket that forced the user to fol-
low a certain course of actions. In effect, our script
modelled only what the expert did on the majority
of occasions and failed to capture what was done
when some unexpected feature of the time series is
revealed. Our system is unfortunately just another
example of a “feeble prototype” (to use the words of
Tukey|{8] in describing efforts to date in creating
expert systems for statistics).

We believe that a useful expert system can be
built for spectral analysis but not with an off-the-
shelf production system such as OPS5. The prob-
lems that must be overcome are the following.
First, a better way must be found to extract infor-
mation from graphs. This is critical since so much
of the information that an analyst uses comes from
graphs. For example, one possible solution to the
straight-jacket problem is to enrich the expert sys-
temn by including many more rules to represent all
possible conclusions that an expert could draw from
a graph. Under our current approach, this would
mean that the expert system would have to guide
the user through an exhaustive list of questions
about the presence or absence of certain features.
This is not feasible since such a scheme would
quickly exhaust the patience of the user.

Second, some mechanism has to be incor-
porated in the system to allow it to "forget” certain
"facts’ that it has learned and all conclusions that it
has deduced from these "facts.” (This problem is
called "truth maintenance” in the expert system
literature.) This is probably the chief difference
between statistical analysis and medical diagnosis
for which production systems have been successful.
In the latter discipline tests are performed on a
patient, and from their results conclusions are
drawn. The results of the tests themselves are
never really questioned. In statislical analysis, cer-
tain hypotheses are assumed to be true until it
becomes obvious that they are wrong. To site the
river flow data as an example, if we hadn't noticed
the relationship between variability and value of the
series in figure la, we might have carried out a har-
monic analysis on the original data. When we got to
the point of plotting the residuals, we hopefully
would have noticed a cyclical variability in the resi-
duals that would have lead us back to concentrate

on figure 1a. (To quote Chambers(2], “.. data
analysis is a more heterogeneous, quantitative and
jteraive process than ... medical diagnosis ... .")

Finally, crealing an expert systemn that is pri-
marily for non-experts vastly limits the number of
potential users of the system. Experts are not
interested in using it because they want to ignore
all of the "help” facilities. Non-experts may find
them initially useful, but, after several runs through
such a system, they wili rapidly acquire the exper-
tise buill into the system and will become bored
with using it.
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5. Display Oriented System for Spectral Analysis

In January of 1985, we received four state-of-
the-art LISP machines for use in our project
through a grant from the Department of Defense
University Research Instrumentation Program with
matching funds from the University of Washington.
The availability of these machines and the experi-
ence we obtained in designing our prototype expert
systemn caused us to design a new system from
scratch. Our new approach is to produce a system
for spectral analysis that is useful for experts in
such a way that it can be augmented with various
“help” facilities for less experienced users.

In order to produce a system that is useful to
experts, we need to have a mode} of how experts do
spectral analysis. Since following a script is obvi-
ously not what an expert does, we have attempted
to come up with a more reasonable model. Our new
model is a rather simple one, namely, that an
expert does spectral analysis by carefully examin-
ing a sequence of graphics displays. At each stage
of the analysis the features that the expert
observes in a display prompt him or her to look at
another display to learn something more about the
time series.

With this model for spectral analysis, a rather
simple design for more intelligent software is possi-
ble. Our first task is to create a set of independent
graphics displays that an expert finds useful. The
expert can make use of such a display as is, but the
less sophisticated user can obtain help by request-
ing a list of features that he or she should be look-
ing for. Alternatively, the user could go though an
interactive "miniscript” that refers to only the one
display at hand and that is designed to force him or
her to note as much about the time series as possi-
ble from that display. Anything that the user learns
about the time series from such a miniscript can be
stored in a data object that represents the time
series. (For our purposes we can define a data
object for a time series as a computer
representation of both the values of the time series
and all other information that is known or has been
deduced about the series.)

To clarify these ideas, let us look at a mock-up
of one display in our proposed system (figure 3).
Each display consists of one or more graphics win-
dows and four "mouse” sensitive windows to control
what is visible in the graphics windows and to allow
the user to advance to other displays. The mock-up
shows the periodogram display as it would be
applied to the data object that contains the log of
the river data. For this display there is only one
graphics window. It shows the values of the periodo-
gram for the time series versus frequency.

The "goodies" window allows the user to do
several things: to reset parameters that control
exactly how the periodogram is calculated and plot-
ted; to augment the basic plot; to perform some
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statistical tests that are associated with the
periodogram, to manipulate the data object under
study; and to create a new data object from the
values shown in the plot. In the mock-up, the first
five items in this window show the user in bold
letters the current values of the settable parame-
ters. Thus the periodogram was calculated from a
demeaned time series and by applying a cosine data
taper to 20% of the time series. It was then
evaluated on a finer grid of frequencies than the
standard frequencies. The results of these compu-
tations were plotted on a decibel versus linear
scale. All of the settable parameters can be
changed by moving a “mouse” controlled pointer to
the appropriate place and by either clicking a but-
ton on the "mouse" (to, say, select a linear "y"
scale) or by clicking and entering a value from the
keyboard (to change the proportion of data tapered
from 20% to some other value). As soon as a param-
eter is reset, the plot in the graphics window is
automatically updated.

Three augmentations to the plot are possible in
this version of the periodogram display. One or
more user-specified fundamental frequencies can
be indicated on the plot by vertical dashed lines,
and any number of associated harmonics can be
shown by vertical dotted lines. In the mock-up a
fundamental frequency corresponding to a period of
one year and its first five harmonics are shown. The
third augmentation allows the user to plot one or
more copies of the kernel associated with the data
taper. This option allows the user to identify peaks
in the periodogram that are due solely to window
leakage.

A list of all data objects in the current analysis
is given in the data objects window. The first data
objects in the list are those that are being examined
in the current display and are marked "active”. For
the periodogram display there is only one, namely,
the data object that contains the log of the river
flow data. The user can manipulate these data
objects and create new ones by selecting (by means
of the "mouse”) one of the final three items in the
"goodies” window. The item "make new data object”
allows the user to create a new data object from the
values plotted in the graphics window. The "add
comments” item lets the user add any comments
desired to any of the data objects in the current
analysis. Finally, the "examine data object” item is
used to look at all the auxiliary information that has
been stored along with the actual data values.

Included with each graphics display is a direc-
tory of all other displays. In the mock-up, after the
user is finished looking at the periodogram display,
he or she may select one of six graphics displays to
see next and may optionally choose any of the listed
data objects to serve as the input to that display if
he or she does not want to use the default "active"
data object.
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Help

+ What should I be looking for in this display?
+ What do the goodies do?
« Why should I look at other displays?

For the less sophisticated user, the help window
offers three types of guidance. The first help item
gives the user a list of features (and examples if so
desired) that he or she should be looking for in the
current graphics display. The system queries the
user concerning the presence or absence of each
feature and stores the results of this interaction in
the "active” data object. The second help item
explains in detail (with examples if necessary) what
each of the items in the "goodies” window does. The
third item in the help window tells the user why he
or she might want to look at other displays. Based
upon what display the user is currently looking at
and what information is known about the time
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Figure 3: Mockup of Periodogram Display

series (as stored in its corresponding data object),
the system will order the items in the directory of
displays to reflect what it thinks would be the most
informative displays to look at next.

Each graphics display has a small set of produc-
tion rules that allows the system to order the direc-
tory of displays and explain to the user the
rationale for the order. For example, the fact that
the harmonic regression display is listed first in the
directory in the mock-up may be due to some
knowledge supplied by the user from one of two
sources: a previously examined display such as the
time series plot display (where the user might have
noted “strong periodic variation”); or the feature
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extraction question-and-answer session in the
current display (where the user might have noted
that the periodogram has "one or more prominent
narrow peaks”). :

The system that we are designing around this
display-oriented model of spectral analysis cannot
be called an expert system since it only provides
local (i.e.. from one display to the next) guidance
and not global guidance. Its chief advantages are:
modularity of design (each display is independent of
all other displays); help to the user is added in a
well-defined way after each display has been
designed; and the help facilities are non-intrusive
and can be completely ignored. We also feel that
our design helps alleviate the well-known knowledge
transfer bottleneck common to expert systems
since here the expert need only answer a few well-
defined questions to make the system "intelligent”
("What do you hope to learning by looking at that
graph?’, "What other graphs would help you clarify
questions raised by this graph?", etc.).

6. Future D:rections

We are currently implementing the spectral
analysis systemn described in the previous section.
After the rudiments of the system are in place and
a prototype of the system has been critiqued, we
plan to incorporate as many graphics displays as
time, resources, and interest allow. We also plan to
augment the system by exploring the following
research topics.

6.1 Classification of Time Series

We recognize that there are many users who
require more global help than our proposed system
can give them. One possibility to provide such help
is suggested by Schank’s cognitive model approach
to Al problems, in which he defines understanding
as the ability to relate the problem at hand to one's
past experience. Gersch{4] has recently published
some results on nearest neighbor rule classification
of time series. His idea is to have a data base of
time series and a measure of dissimilarity between
time series (he used the Kullback-Leibler informa-
tion number). Any new time series is then classified
by comparing it to each of the time series in the
data base. The nearest neighbor to the new time
series is defined as that time series in the data base
which is least dissimilar.

These ideas can be used to produce global help
for a user. The first step is to have an expert do a
spectral analysis on a large number of different
time series. For each time series, the expert will
use some combination and ordering of graphics
displays snd will create a certain collection of data
objects. When an inexperienced user comes in with
a new time series, it is classified using Gersch's
scheme, and the user is told to follow the actions
the expert took in analyzing the time series in the

data base that is least dissimilar. (If there are
several time series in the data base that are close in
dissimilarity, the user could select visually that one
series that he or she feels to be closest to the new
series.) '

What we need to investigate is 1) whether
Gersch's classification scheme is adequate and, if
not, whether we can come up with one that is
(Gersch's scheme is a time domain one; there is a
corresponding frequency domain one that we plan
to explore); 2) what is the most effective way of tel-
ling the user to follow a set of actions in our system;
and 3) how we can automatically update the data
base of time series (this will involve some issues in
machine learning). -

6.2 Automated Creation of Graphics Displays

One of the nice features of the S and ISP
interactive statistical packages is the ease with
which a user can expand the system by adding new
functions of his or her own creation. If our system
is to be widely used, we need to develop some way
for the user to add new graphics displays. One of us
(Kerr) will be exploring this problem of a "program
writing” program in a complex system.

6.3 New Data Analysis Tools

In a future report{5] we will give some answers
to the fourth question of the introduction, namely,
"what new tools are available for spectral analysis
on a state-of-the-art workstation?". We have several
promising ideas to exploit the unique graphical
capabilities of these machines.
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ARTIFICIAL INTELLIGENCE AND STATISTICS:
DO WE HAVE THE CART BEFORE THE HORSE?

William F, Eddy

Department of Statistics
Carnegie-Mellon University

The last two decades have seen a growing interest in production systems, or

rule-based expert systems. Originally, production rules were statements of the form

"if A then B" and reasoning in these systems was simple (albeit tedious) and exact.
Recently, a number of rule-based expert systems have been used on inexact reasoning
(that is, on uncertain knowledge). This talk will provide a comparative review of
some of the best-known methods of inference used in expert systems and will argue

that most of these methods are hopeless as models of human reasoning.

BAYESIAN IMAGE RESTORATION
Stuart Geman
Division of Applied Mathematics
Brown University

We develop a class of probability image models that accommodate smoothness,
edges, textures, and other, "higher level'”, image attributes. These are Markov
Random Fields with a three dimensional graph structure. The "bottom" level of the
graph is the pixel process, corresponding to the actual digitized i@age. Successively
higher levels correspond to increasiningly complex attributes, including locations
and orientations of edges, line segments, and polygonal regions. The constructed
distribution is employed as a prior distribution on images. Given a degraded
picture, we seek the image that maximizes the posterior distribution (the so-called
MAP estimator). Maximization is performed by a highly parallel computational
technique called stochastic relaxation.

We will present the results of experiments with some simple pictures. These
demonstrate: (1) parameter estimation for the prior; and (2) blure and noise

removal, segmentation, and boundary-finding at extremecly low signal to noise ratios.
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2l Knowledge Representation for Ezpert Data Analysis Systems
'\

3 Ronald A. Thisted

L)

Department of Statistics
The University of Chicago
Chicago, lllinois 60637

-

An expert system is a computer program which performs a task at the level of performance of a human
N expert with some years of experience at the task. In this paper we examine what it would mean for a
computer program to be an expert system for data analysis, why there is some hope that such a system
could be developed, and what makes an expert system different from other sorts of statistical software
with which statisticians are familiar. Standard programs implement algorithms for computations on
data, which in turn are represented using data structures. The choice of a suitable data structure often
determines the form an algorithm will take, and such a choice may be crucial to the efliciency or feasi-
. bility of the computation. In expert systems the primary “data’ are the fact, heuristics, and strategies
. used by experts to solve problems in their domain of expertise. An appropriate form for representing

statistical knowledge is a prerequisite for a successful expert data analysis system. We examine some

alternatives for knowledge representation in this context. Quite apart from its potential contribution to
o expert systems, such investigations shed light on the nature of data-analytic expertise and how such
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expertise can be taught.

1. What is an expert system?

This paper i3 an introduction to the issues involved in
designing and implementing an expert system that might
be useful in data analysis, with particular attention to
aspects of the problem of representing statistical
knowledge in a form suitable for computation. Expert
systems differ in substantial respects from ‘‘ordinary”
statistical software systems, and the differences are fun-
damental to an understanding of the role that expert
knowledge plays.

1.1. General definition and examples.

Expert systems are defined partly in terms of what they
do, partly in terms of how they do it, and partly in
terms of the principles that led to their construction.
There is some agreement (see Chapter 2 of Hayes-Roth,
Waterman, and Lenat (1983), for instance) that an
expert system must perform a complex task at the level
of a human expert who has several years of experience at
that task. Several attributes shared by expert systems
have emerged. An expert system must embody expertise,
in the sense that it is based upon rules which correspond
to what human experts do; it must employ symbolic rea-
soning, rather than purely numerical computation in
solving problems; it must exhibit intelligence in the sense
that it can reason from basic principles - and can recog-
nize which principles are applicable ~ rather than being
able to deal only with situations narrowly specified in
advance; it must be dealing with a problem of suflicient
complexity that human experts are generally required; it
should have some ability to reformulate a problem from
the form originally presented into a form more suitable
for analysis; and finally, it must have some ability to
reason {or at least to explain) about its own reasoning

process. This last attribute of having an explanation
facility seems crucial and, to some extent, defining.

Some examples of successful expert systems, which are
consulted by experts in practice, are DENDRAL
(Buchanan, Sutherland, and Feigenbaum, 1969; Lindsay,
et al, 1980) which identifies organic chemical compounds
based on spectrographic data; MYCIN (Shortliffe, 1976}
which diagnoses infectious blood diseases; and CADU-
CEUS (Pople, 1981), a system for diagnosis in internal
medicine.

1.2. Expert systems for data analysis

What role could an expert system play in the practice of
statistics? Several different ““role models™ have been sug-
gested, and they lead to very different kinds of pro-
grams, performing very different kinds of tasks. Oldford
and Peters (1984) developed a prototype expert system
to recognize collinearity in regression problems. This
program was designed to be the Guardian of the Novice,
in effect, to prevent the unexperienced user of regression
from stumbling blindly into hazardous terrain. The
REX system of Pregibon and Gale (1984), on the other
hand, might be termed a Guide for the Perplezed. REX
was designed to guide its user through an appropriate
regression analysis, in effect taking on the role of instruc-
tor as well as expert. Both of these systems assume
users with little background in statistics or data
analysis.

Another role that experts systems could play in statisti-
cal work is that of an tntelligent assistant, with the
knowledge required to examine all of those things which
the competent data analyst knows he or she should look
at, but for which there is often little time (or patience).
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On this view, a program with quite limited intelligence
could be widely useful; it would not even have to be
able to deal with problems, it would simply have to be
able to recognize the problems and bring them to the

analysis should be, or whether a proposed step is
appropriate, would require not only monitoring the
sequence of commands entered by the user, but also
some ability to reconstruct the reasoning behind those
commands.

attention of the expert human statistician. In the
absence of a plea for help from the program, the statisti-

A final role model for expert systems in data analysis,

‘:. cian could assume that no diffliculties requiring special The user-system interaction is also different. Statistical
:; expertise were present, freeing him or her to devote more computer packages are designed to give lots of answers

: time and energy to problems of greater difficuity or com- for a few economically worded questions generated by
X plexity. the user. The expert systems discussed here, on the

other hand, are more adept at raising questions rather
than answering them. In effect, their role is to note

N perhaps the most ambitious of all, is that of an appren- aspects of the data set that may render all of the
* tice consultant. In this view the system would interact answers produced by a standard package inappropriate,
-~ with a practiced, if not expert user, say a PhD student misleading, or meaningless.

. in statistics consulting with a scientist on a problem in

- data analysis. It would ““look_over the shoulder” of the Finally, the internal construction of expert software is

user, making suggestions and noting possible problems.
The goal here is once again to assist a user with some
background in statistical analysis to make a better, more
thorough analysis, and to bring to the [ore situations

likely to be quite different from that of standard statisti-
cal software in terms of control structure. While flow of
control in the latter is often a matter of sequential invo-
cation of routines explicitly or implicitly requested by

'F__ o

5 0ty

which may require more expertise than either the pro- the user’s typed commands, the flow of control in expert _'\:
gram or its user possess. systems will depend more upon the characteristics of the -:.'}
particular data set under consideration. The internal :-":.'

The statistical consulting program at the University of construction of the expert system will be suitable for g,

. '; DA AN
. NCSERESEMERTREN
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Chicago is not unlike that at many universities. Under
the direction of two faculty members, all PhD students
must participate in statistical consulting with members
of the university community, to whom consulting ser-
vices are offered without fee. A major problem is that
the program directors are booked with a solid three-week
backlog of cases. Many of these cases turn out to be (for
the statistician) routine. The possible role of expert sys-

more symbolic than numerical computation (although
today’s numerical computations will necessarily be
invoked as subroutines to obtain intermediate results),
which suggests that the code will include substantial
chunks of LISP or Prolog. The greater the extent to
which the data themselves determine the statistical com-
putations to be applied, the more one’s view of what
constitutes a statistical algorithm becomes distorted.

tems here is to kill the three-week backiog by not wast- This leads us to some consideration of the roles played

- ing the human expert’s time on routine matters, while at by data, algorithms, and knowledge in expert systems.
7, the same time, providing some assurance that major

:'_. difficulties are not simply being overlooked.

<

In the remainder of the paper, the intelligent assistant 2. Algorithms, data structures, and knowledge bases.
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and the apprentice consultant models will be of primary
interest.

1.3. Expert data-analysis systems differ from standard
statistical software.

A natural question that arises is whether expertise could
be built in to existing statistical packages such as
Minitab, SAS, SPSS, and the like. To answer this ques-
tion it is important to understand how expert software
differs from the standard software that statisticians are
used to writing and interacting with.

Statistical computer packages increasingly offer on-line
“help” facilities, but none of the models of expert sys-
tems outlined in the previous section could adequately be
built upon these facilities. Today, in order to receive

The essence of standard programming as we understand
it today is neatly summarized in the title of Niklaus
Wirth’s book, Algorithms+Data Structures=Programs.
It is now well-understood that the choice of data struc-
ture can greatly influence the suitability of alternative
algorithms for particular tasks, and can also greatly
affect the performance of algorithms, and even their
feasibility. (For instance, it is rather difficult to carry
out a binary search in a linearly-linked list.)

In expert systems we may have a parallel formula:
“Knowledge+ Inference=Expertise,” reflecting the
comimon-sense notion that experts both know a lot, and
know when and how to apply their knowledge. The
term “‘knowledge’ as used here represents the collection
of facts, heuristics, and strategies that experts use to
solve problems. A knowledge base is a structured collec-
tion of symbolically-represented expert knowledge.

] ",.

A

N,
), - help, the program user must know that help is needed :;-'.\_-'{
- and must know when and how to ask. In return, the The power of an expert system depends on its knowledge ,:‘._4:
program generally can give assistance only so far as the base. [t must have adequate coverage, that is, it must e
O syntax of the program's command language. Advice contain facts, heuristics, and strategies sufficient to cover e
+ concerning what the next step to be taken in the a the wide range of problema in its domain. It must also '*_}%
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have an adequate representation for that knowledge,
suitable for an appropriate search algorithm to find
those components of the knowledge base which are
relevant in the current context. There are several
schemes for knowledge representation that have been
developed in the Al literature, of which a few seem to be
particularly well-suited to knowledge about data
analysis.

The most promising candidates are production systems
(discussed by William Eddy and by Gail Gong in their
presentations in this session), augmented transition net-
works, and frame systems. Production systems are col-
lections of rules (“productions”) of the form, “If
condition-A then action-B.” Taken together, the collec-
tion of productions can be thought of as defining a tree
and a way of traversing its branches. In the data-
analysis context, each node in this tree corresponds to a
stage in the data analysis, and moving from one node to
another would generally correspond to performing a
small piece of the data analysis. Augmented transition
networks can most easily be thought of in this setting as
adding information to the tree which records the rela-
tionship between any two -connected nodes. Finally,
frames are quite general ways of organizing knowledge;
both production systems and ATNs can be embedded in
the frame paradigm. In our seiting we can think of a
frame as being a set of productions which preserves the
context in which the productions are employed.

The inferential machinery, or the method by which the
knowledge base is searched to apply to a situation at
hand, is related to the adequacy of coverage and ade-
quacy of representation of the knowledge base in much
the same way that algorithms are related to data struc-
tures in conventional programming. With these ideas as
background, we now turn to consideration of some issues
involve in building a suitable knowledge base for data
analysis.

3. Knowledge engineering.

From the scientific standpoint, knowledge is representa-
tional, in the sense that we cannot say that we know
something (or that we understand a phenomenon}) until
we can represent it using a model which embodies what
it is that we think we know. One of the major benefits
of publishing scientific papers is that in the act of writ-
ing, authors are forced to come to grips with the
difficulties, inconsistencies, gaps, and inadequacies that
were simply not apparent to them before. The theorem
whose proof was sketched on a napkin may prove to be
more delicate than first thought; the iron-clad argument
may reveal a chink in the argument. What is more, the
concrete representation makes it possible to transmit
this knowledge to others in a way that is more feasible
and more certain than through observation and appren-
ticeship.

A concrete representation is not a prerequisite to having
knowledge, however. Human experts by definition pos-
sess abilities which others do not, and these abilities are

based on facts and methods which they have assimilated
and refined over time, whether they have done so cons-
ciously or not. Experts often cannot articulate the
relevant knowledge they possess which they use on a
daily basis, and what they do say they know may in fact
conflict with what they actually use in practice. Many
experts are ill-prepared by training or by inclination to
articulate the knowledge they use in rendering expert
judgments accurately. This makes it difficult to teach
new people to become experts in the field.

At this point enters the knowledge engineer. The term
has been coined by Al workers in expert systems to
denote an individual who is trained in expertise elicita-
tion and articulation, a psycho-analyst of expertise.
Knowledge engineers typically are grounded both in
computer science and cognitive psychology, and what
they do is to work with a human expert in his or her
domain of knowledge to elicit, and then to fashion a con-
crete representation of, the knowledge that the expert
brings to bear to solve difficult problems that arise in the
expert's domain. There is a shortage of people with the
qualifications and experience to do this work.

Note that the knowledge engineers themselves are
experts in a field, too - that of knowledge elicitation. To
distinguish this top-level domain of expertise from the
domains of experts to which it is applied, following Gale
and Pregibon, we refer to the top-level area as the it sub-
ject domain, and the areas of application we refer to as
the ground domasns.

Statistical consulting is very similar to knowledge
engineering. Statistical consultants are expert in statisti-
cal analysis (the subject domain), and they apply their
knowledge by collaborating with experts in other fields
of inquiry (the ground domains). Moreover, the first job
of the statistical consultant is to help the client to arti-
culate what he or she knows that is relevant to the prob-
lem (but may not have realized consciously). We help
our colleagues to question assumptions they make impli-
citly. We help them to turn from matters of little conse-
quence (“Do | use n or n-1 here?”) and to focus on those
matters that turn out to be essential (“Can you
remember anything at all about the experiment that
might distinguish these two halves of the data?”’ “Oh,
yes. They were run in different years by different techni-
cians.”’). We know that the questions people bring to us
are usually not the appropriate questions which ulti-
mately get addressed, and we assist in the process of get-
ting the right questions formulated so that they can be
addressed.

As a consequence of these similarities to knowledge
engineering, statistics as a discipline has something to
contribute to artificial intelligence work in general, and
to expert systems research in particular. \We have been
about parts of the knowledge engineering business for at
least half a century. (At the same time, however, we
have devoted little attention to understanding very
thoroughly how we accomplish what we do in this enter-
prise.) Statistics can contribute some of the basic ideas
and methods of data analysis, experience in statistical
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. consultation, and techniques for elaboration and for

display. It may even be that, despite the shortage of
trained statisticians, we may even end up contributing
bodies to knowledge engineering front (since the pay is

This said, we can begin to outline the areas in which
research is likely to be fruitful. Data analysts consulting
with scientists expert in their {ground) domain are
general-purpose  scientific  detective/psycho-analysts.

'_-‘ better). They proceed by asking questions, and often these ques-

N tions are suggested by what they see in the data. The

~, Constructing an expert system which embodies answers (o these questions lead both to alternative ways

o knowledge about data analysis or about statistical con- of looking at the data and to new questions. The impor-

: sulting involves much that would be required in an tant work of the consultant seems to get done through
expert system to construct expert systems, in that the the questions he asks of the client. It is important, then
ground domain for the system (statistical consulting) is to investigate how these questions are structured, what

. itsell a high-level domain of expertise which can in turn plans of inquiry are adopted, and what it is that leads to

- be applied in a number of ground domains. ‘The current the formulation of these plans.

" effort by Gale and Pregibon (1984) to construct Student,

"- an expert system capable of learning to do data analysis The natural way to learn about these issues is to observe

in a variety of contexts by working through a sequence
of problems in those contexts, is in effect, an expert sys-
tem for building expert systems. It is an ambitious
endeavor, which nonetheless shows signs of great prom-
ise.

How should we go about the process of studying what
knowledge we bring to bear on statistical problems so
that we can construct a suitable representation for it?
Pregibon and Gale and others have used the device of
constructing worked examples, carefully annotated, and
diaries of the analysis process. These devices can be cou-
pled with explanation to colleagues who can be expected
to ask penetrating questions when the reasoning process

experts at work (as knowledge engineers do), perhaps
even to conduct experiments involving them. Some
years ago, | received a telephone call from a colleague in
pediatric neurology; he had a quick question. “I can’t
remember,” he said, “whether | should use standard
deviation or standard error. Which do you suggest?”
We began to talk, and over the course of a few weeks, it
became clear that the answer was, “None of the above."
We ultimately used a three-factor unbalanced mixed
model with covariates-and we learned more about the
disease process under study by doing so. Unfortunately,
I have no idea what sequence of events led from the
innocuous question on his part to the ultimately more
complex solution at which we arrived. This is the process
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is not entirely clear, and can be assisted by automatic
means such as statistical packages which keep “journal
. files” of the sequence of commands used in analyzing a

ChO ]

which requires scrutiny and study.

G
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data set. Thisted (1984) has described the role that
computing software environments can play in learning
about how data analysts behave and what strategies
they adopt. On this view, a considerable amount can be
learned about the process of statistical analysis without
actually attempting to implement any of it in an actual
expert system to be run on a computer. A similar view
has been expressed in the artificial intelligence literature
by Doyle (1984).

4. Statistical Iting as a del

A few words are in order concerning knowledge about
statistical consulting as a basis for expert systems in
data analysis. The questions of what facls consultants
know, what heurtstics they employ, and the stralegies
that they adopt are all understudied problems. There
has been a surge of interest within the statistical com-
munity in the last five years on the topic of teaching sta-
tistical consulting, and the resulting refiections on the
process of statistical consulting are valued contributions
to this secondary endeavor of building consuiting exper-
tise into usable computer systems. At the same time,
the emphasis has been more on apprenticeship and
supervision of trainees rather than on the special skills
that expert data analysts have and how those skills

5. Representing knowledge about question-asking.

What must be considered in building a concrete
representation for the knowledge about question-asking
that data analysts seem to possess and use to such good
eflect? Questions are asked both of the data and the
expert in the ground domain. These questions often
alternate, the data suggesting questions to ask of the
client, whose response suggest new questions to ask of
the data. We can distinguish four levels of questioning:
asking questions of the data, asking questions of the
experts, using answers to formulate questions, and ask-
ing questions about questioning. We now turn to just
the first of these levels, as it is the level which we are
currently closest at being able to explicate. Some of the
issues raised in the remainder of this section are dealt
with more thoroughly in Thisted (1985).

“Asking questions of the data” can be broken down into
three rough stages which together describe a single step
in the analysis of a data set: focus, selection, and
transformation /reassessment. In focusing the analyst
concentrates on a relatively small subset of the data,
perhaps a handful of variables (or cases) of interest at
the moment. Selection is the process by which a collec-
tion of appropriate transformations of the data is
identified; transformation here meaning nearly any com-

e

A might be transmitted. We know of no study, thorough putation on the data set, including computing a regres-
N or otherwise, of the process by which successful consul- sion (producing estimated coeflicients, fitted values, resi-
2 tants in data analysis approach their work and achieve duals), computing and displaying a scatterplot of two
= their results. variables, constructing a confidence interval, etec.
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Finally, transfc tion and rea nt is the process
of carrying out the computation, and then reassessing
the situation. Reassessment may lead to a change of
focus, to a change in the class of appropriate transforma-
tions, or to new questions of the client.

grams before we appreciated the role of data structure,
top-down construction, information hiding, loop invari-
ants, and the rest. Indeed, much of what we know
about these ideas was learned through reflection on what
made some programs better than others and some pro-
grammers better than others. Even if no generally use-
ful expert systems are built, we may still make great
strides in improving the general quality of data analysis
because we better understand what goes into data

-,
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8. On carts and horses.

5.
L

Bill Eddy’s opening remarks were entitled *“Artificial
intelligence in statistics: Do we have the cart before the
horse?”” This provocative title prompts a few observa-
tions about the Al cart and the statistical horse.

There is no cart. It should be clear from the outset
that expert systems lor general use in data analysis don’t
exist, although a few demonstration systems have been
built. Moreover, there is no general methodology for
building expert systems. And at least for the kinds of
systems we have been discussing, there are no general-
purpose expert systems of any kind which incorporate
the higher-level meta-knowledge of a domain which
interacts with a variety of ground domains.

There is no horse. What makes a particular data
analysis a good one i3 little studied-and even less under-
stood. At the moment, we teach data analysis and con-
sulting by example, and we hope that some of it will rub
off on our students.

We need both carts and horses (in either order).
The combination of the two is certainly more usefu! than
either separately. What is more, understanding horses
may help us to mass-produce carts, and vice-versi. A
better understanding of useful heuristics and successful
strategies (from expert systems) will lead to improve-
ments in statistical teaching and practice. What is
more, with even rudimentary expert data-analysis sys-
tems, the human experts can be reserved for the impor-
tant problems, since there are so many problems and so
few experts.

Neither cart nor horse may be possible. This is a
fact, and we must live with it. But many useful things
have been learned by striving for the impossible. Hence,

We must attempt to build both carts and horses.
There is much to be learned solely from the attempt.
Except perhaps for John Tukey’s personal tour-de-force
(Tukey, 1977) which records what Tukey senses from his
own experience and reflection to be important and useflul
strategies and techniques for data analysis, there has
been no serious attempt to represent what data analysts
do, and hence, what knowledge they possess.

We cannot wait until data analysis is more fully under-
stood to bhegin work on expert systems for data analysis,
primarily because there is not much work going on try-
ing to undcrstand what it is that good data analyst's do,
and how it can be taught. The major benefit from work
in expert systems for data analysis may well be a better
understanding of the process of data analysis. It is use-
ful to recall a brief bit of recent history. We wrote pro-

analysis of high quality, so that we can convey it mor
directly and more successfully to budding data analysts.

At the same time, much of expert systems work is
closely related to what we think data analysts actually
do. Both good data analysis and successful knowledge
engineering involve drawing out an expert, evoking what
he knows but does rot say about a problem. Both the
statistical consultant and the knowledge engineer must
be adept at asking the right question which brings into
focus the critical aspect of what is being done. Thus,
work in expert systems for data analysis may well bring
new paradigms for knowledge articulation to the atten-
tion of workers in Al, and at the same time may help to
make the techniques of knowledge engineering needed to
construct general expert systems more readily available.

Acknowledgement. This material is based upon
research supported by National Science Foundation
Grant No. DMS-8412233 to the University of Chicago.

References

{If Buchanan, B. G., Sutherland, G. L., and Feigen-
baum, E.. A. (1969). “Heuristic DENDRAL: A pro-
gram for generating explanatory hypotheses in
organic chemistry,” in Machine Intelligence, B.
Melzer and D. Michie, editors, 4, 209--254.

[2] Doyle, Jon (1984). “Expert systems without com-
puters or theory and trust in artificial intelligence,”
The Al Magazine, 5(2), 56 -63.

[3] Gale, William A., and Pregibon, Daryl (1984).
“Constructing an expert system for data analysis
by working examples,” in COMPSTAT 198§:
Proceedings in Computational Statistics, (Prague,
Czechoslovakia), T. Havrdnek, Z. Siddk, and M.
Novak, editors. Physica-Verlag: Vienna. 227--236.

4] Hayes-Roth, Frederick, Waterman, Donald A., and
Lenat, Douglas B., editors (1983). Building Fxpert
Systems, Addison-Wesley: Reading, Massachusetts.

[5] Lindsay, R. K., Buchanan, B. G, Feigenbaum, E.
A., and Lederberg, J. (1980) Applications of
Artificial Intelligence for Organic Chemistry: The
DENDRAL Project. McGraw-Hill: New York.

[6) Oldford, R. Wayne, and Peters, Stephen C. (1984).
“Building a statistical knowledge based system with
Mini-Mycin,” Praceedings of the Statistical Com-
puting Section, American Statistical Association:
Washington, 85--90.

7] Pople, H. ., Jr. (1981). “Heuristic methods for
imposing structure on ill-structured problems The
structuring of medical diagnostics,” in Artaficial




R T L, Y P R K BEEEN 4 s B % b o wemm—— - -

P

v

. LR

<1

T et
st

WVTAINTRIN Y

SRRDRY HA

Intelligence in Medicine, P. Solovitz, editor. West-
view Press: Boulder, Colorado, 119--185.

Pregibon, Daryl, and Gale, Willam A. (1984).
“REX: An expert system [or regression analysis,” in
COMPSTAT 1984: Proceedings in Compulational
Statistics, (Prague, Czechoslovakia), T. Havrdnek,
Z. 8id€k, and M. Novak, editors. Physica-Verlag:
Vienna. 242--248

Shortlifie, E. H. (1976). Computer-Based Medical
Consultation. MYCIN. American Elsevier: New
York..

Thisted, Ronald A. (1984). ‘“‘Computing environ-
ments for data analysis,” Technical Report Number
166, Department of Statistics, The University of
Chicago.

Thisted, Ronald A. (1985). “Representing statisti-
cal knowledge and search strategies [or expert data
analysis systems,” Technical Report Number 171,
Department of Statistics, The University of Chi-
cago.

Tukey, John W. (1977). Ezploralory Dala Analysis,
Addison-Wesley:Reading, Massachusetts.




B U SR

R et T L

l] AR RAIT _ I

LN T

O]

et
[

oy Bt LY

PRODUCTION SYSTEMS AND BELIEF FUNCTIONS

Gail Gong

Statistics Department
Carnegie-Mellon University

Expert systems are computer programs which use domain-specific knowledge to make inferences about
problems arising in that domain. Some expert systems must handle knowledge which is uncertain, and a
popular tool for handling such uncertain knowledge has been the adhoc uncertainty factors found in MYCIN,
We explore another tool, belief functions, introduced by Art Dempster and Glenn Shaler,

1. Production Systems

Suppose a customer wants to buy a VAX computer. He has
some idea of what he wants: his VAX should have so much
disk space; it should support so many micom lines; he wants it
to connect to this kind ol tape drive and that kind of printer;
and so on. However, there are still many details that necd to
be decided. What kind o wircs should be used to connect this
to that? What kind of boards are necessary? The customer
needs a VAX expert to insure that the order is consistent and
complete.

Actually, DEC has a computer program that configures VAX's.
I'he program, calted R1, uses production rules. An example of
a production rule might be:

DISTRIBUTE-MB-DEVICES-3

IF:
THE MOST CURYRENT ACTIVE CONTEXT IS
DISTRIBUTING MASSBUS DEVICES
AND THERE IS A SINGLE PORT DISK DRIVE THAT
HAS NOT BEEN ASSIGNED TO A MASSBUS
AND THERE ARE NO UNASSIGNED DUAL PORT
DISK DRIVES
AND THE NUMBER OF DEVICES THAT EACH
MASSBUS SHOULD SUPPORT IS KNOWN
AND THERC IS A MASSBUS THAT HAS BEEN
ASSIGNED AT LEAST ONE DISK DRIVE AND
THAT SHOULD SUPPORT ADDITIONAL DISK
DRIVES
AND THE TYPE OF CABLE NEEDED 10O CONNECT
THE DISK DRIVE TO THE PREVIOUS DEVICE
ON THE MASSBUS IS KNOWN
THEN:

ASSIGN THE DISK DRIVE TO THE MASSBUS

A rule contains a left-hand-side (LHS) and a right-hand-side
(RHS). THe LNS is a set ¢f conditions which must be satisficd
belore the conclusions or actions in the RHS can be accepted.
To get an idea of how this production program might run,
suppose that each customer order results in a meeting. At the
meeting are representatives of the rules (one representative
for each rule}, a secretary, and an arbiter, The secretary
begins by writing the specilications of the customer order on
the blackboard; each representative watches carefully to see if
the LHS of his particular rule- has yet heen satisfied by the
specifications on the blackboard; when a representative sees
his rule satisfied, he signals the arbiter; more than one rule
can be satisfied at any one instant, so the arbiter mus! decide
which of the satisfied rules can "fire”; the secretary changes
the specifications on the blackboard according to the RHS of
the fired rule. As more rules are fircd, the blackboard changes
and other representatives find their rules satistied. For each
set of conditions on the blackboard, a reprasentative can have
his rule fired at most once. The meeling continues until no
representative finds his rule satistied. The blackboard at the
end of the meeting describes the coinpleted specifications of
the customer order.

In R1, the rules and conditions are assumed to be
deterministic. Either the customer wants a printer or he
doesn’'t. Given that he wants a printer, he may or may not
need this kind of board, but it we have enough conditions
about what he wants, we can be quite sure of what kind of
board he needs. In, say, a medical diagnosis problem, we are
often not sure if the paticnt has a particular set of symptoms.
Also, determinislic rules are harder or impossible to obtain.
We cannot say that a person with this list of symptoms Is
surely to have this disease. The best we can say is that given
these symptoms, the person is likely to have this disease. The
problem then becomes that of expressing and reasoning with
these uncertainties.

The computer scientists are convinced that using probabilities
is too hard if not impossible, so they have turned to rather
adhoc procedures, such as the certainty factors found in
MYCIN. Recently, however, some compuler scientists have
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discovered belief functions, which were first proposed by
Dempster, and later developed by Shaler. (See Shaler (1976).)
Beliet funclions are appealing to the computer scientists
because they are less restrictive than probabilities, they can
express ignorance, and they have some mathematical
backing. Several artificial intelligence groups are lrying to
implement belief functions into their expert systems, and this
is reason enough lor statisticians to become actively involved
in beliet functions for expert systems.

2. A Small example

To introduce the ideas of beliel funclions and their
refationships to production systems, we will consider the
following liny example. This is not, of course, a real expert
system, but it uses if-then rules to help obtain a desired
conclusion.

Suppose | go away on a lrip for a week. During that time, | am
forced to leave my house unoccupied and unguarded. Upon
my return, | discover that the television set is missing. 1 also
notice that there are dried-up muddy tootprints leading to and
from the back door. Who was the thief?

The house is surrounded by clean sidewalks, 50 an ordinary
passerby would not have had muddy boots unless he had

been walking in the garden and unless the garden was wet..

An idea flashes. Maybe it was the gardener. When | teft on
Sunday, the garden was dry. The gmadener comes on
Monday. Therefore | construct the rule: I it rained_on
Mond:y, then the gardener had muddy boots,

| don't know my gardener very well, but | have the feeling that
he is not a professional thiel. IHe wouid not have entered the
house had the door been locked. | construct another rule: |f
the_garciener had muddy boots, and the door was_unlocked,
then_the footprints belong to the gardener. Another rule that
obviously lollows is: i the foolprints belong to the gardener,
then the gardener is quilty,

I might have some other evidence that corraborates with the
foolprint evidence. Fingerprints are found in the house that
do not match any of the fingerprints of the members in my
family. { construct one more rule: It the fingorprints match

Figure 1 summarizes the four rules.

We emphasize here that we are allowing for the pussibility that
each of these rules needs not have 100 percent certainty of
holding. Even though it was raining on Monday, we allow the
possibibty thit the gardener did ot have muddy boots.
Perhaps it was raining so hard that he decided to wait until
Thursday to work on the garden. Also there is uncertainty on
the leit-hand-side conditions. The weather 1eports in the

Figure 1.
A = "It rained on Monday.”
B = "The gardener had muddy boots.”
C = "The door was unlocked."”
"The footprints belong to the gardener.”
E = “"The fingerprints match those in the gardener’s toolshed.”
F = "The gardener is guilty.”

=)
n

:A>B
:B&C-H>D
:DOF
ED>F
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newspaper are perhaps somewhat reliable, but misprints are
possible; and I'm not sure whether | checked the back door
betore | left because it is used so infrequently.

Our goal is to quantify our uncertainties hoth of the left-hand-
side conditions and of the rules and then be able to calculate
the resulting uncertainties of the right-hiand-side conditions.
That is, if we have a measure of belief on A and a measure of
beliet on the rule A -> B, then what is our measure of belief on
B?

3. An Introduction to Belief Functions
The material in this section is from Shafer (1976) and Shafer
and Tversky (1984). A frame of discernment O is a set of all
possibilities under consideration. For example, if we were
concentrating just on the question of whether or not A were
true, we might consider the trame

0, ={a,a)
where a, denoles "A is not true”, and a, denotes "Ais true”.
The trame of discernment can be much more complex of
course. For example, if we were concentrating on the rule
A -> B, we would consider the frame

9/\8 = {(a,b):a =01;b = 0,1}, {1

where a = 0 or 1 according to whether A is false or true, and
similarly for b and B.

Just as it is easier to introduce probabilities through
probability density tunctions, it is easicr, here, to introduce
befief functions through basic probability assignments. Shafer
defines the function m ; 29 .> [0,1] to be a basic probability
assignment if
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m{$) = 0,
Z m(A) = 1.
ACO
We call the subsets A of 0 which have positive m-value
assignments, m(A) > 0, the fgcal ¢lements of m. The beliet
tungion, Bel 2 10, 1}, associated with m is defined by

Bel(A) = £ m{(B).
BCA

Before iscussing the propetties or interpretations of basic
probatait, astignments and behet functions, let us consider a
sunpie pumencal example:

Q-=1{0.96, 03).

m{8,} = 32
m(ﬂ'.ﬂz) = .08
m{n 6.} = .48

mo) = 12,

Moo that unbike probabiity density functions, the domain of
mos not restncted o singletons, also the focal elements are
not «hgomt. We thank ol our belief as being divisible into
chunks The m abave says we put 32 of our belief on 0'; .08
of the mass i3 “free to wander” among the eolements in
(0,.0,). andg so on. A mass which is free to wander on all of 8
rellects ignorance. The more specitic a chunk of mass is, the
more informaton it reflects. An m function which puts all its
mass on O reflects total ignorance. An m function which puts
all s mass on a singleton reflects total certainty for that
singleton.

The i lunciion describes the measure of belief that we
commit oxactly to each set; the lotal amount of belief
committed to each set is described by the associated belief
function:
Bel(4,} = .32
Bel(ﬂ,.oz) = .40
Bel(ﬁ'.ﬂs) = 80
Bel(Q) = 1.00
For example, the belief on (01.02} is golten my adding the m
on {0} to the m on (0|.02). these two sets being the subsets
of (0‘.02) with positive m values. The mass .40 is the amount
of mass that is conlined somewhere in {8,.0,}, and it
represeits our total belief on {8 ‘,02).
What do the numbers 32 or .08 mean? In answer to this
guestion, Shaler and Tversky (1984, p. 23) propose some
thouqht_experiments.  The simplest involves simple support
funciions whose m functions have the form
m(A) = s,
m(0) = 1.s,
winre A is a subset of © and 0< s¢ 1. We describe such a
Bohel function as the simpte support function with mass s on
il focal element Al Simple support functicns result from a
ircee of evidence that offers support for a single subset A, For
cxample, in the gardencr example, if we are concentrating our
~tterntion on whether or not A is true (so that we are locking at

the frame of discernment OA), the newspaper reporting rain on
Monday should give some support on [a‘)‘ The amount of
support depends on the following thought experiment.

Imagine a sometimes-reliable truth machine. In its “truth”
mode, it tells the truth, but in its "unreliable mode" it
generates totally random statements which give us no added
information. The probability of being in the truth mode is s,
while the piobability of being in the unrelinble mode is 1-8.
The truth machine spouts out "A is true”. Shaler and Tversky
propose that the resulting belief function should be the simple
support function with mass s on the focal element A. In the
gardener example, we think of the newspaper as the
sometimes-rctiuble truth machine with prebabitity s of telling
the truth, and probability 1-s of printing a totally random
statement. The newspaper reporting "Rain on Monday" leads
to a simple support function with mass s on the focal element

(a,).

Shafer and Tversky propose other thought experiments for
beliet functions which are more complicated than simple
support funclions. We will not describe them here.

It may turn out that we have another piece ol evidence for rain
on Monday. A neighbor recalls that it rained on Monday. We
would like to combine our evidence supplied by the
newspaper with that supplied by the neighbor. We will use
Dempster's combination rule. Given the basic probability
assignments m, with focal. elements A,. N Ax and m, with
focal elements B'. Bn. if K, given by
= W 1
K=(. X m‘(Ai)m2(Bl)) .
AN Bi =%
is positive, then the belicf flunclion resulting from the Dempster
combination has m functionm = m, L] m,, delined by
m(A) = K % "‘|(A.)'"2(Bi)'
A.,nBi = A
The formula appears more complicated than the concept. To
ilustrate, suppose
0 = (01‘02. 03}.
m‘(0|.02) = .40
m'(()) = .60

m2(0‘.03) = .08
1112(()) = .20
The Dempster combination m = m 6m, is easily gotten by
considaring the lollowing table.
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16,0 | ©
40 60
0,00 | 0y | 16,8
.80 .32 48
my
e (6,8,)
.20 .80 A2

3ince there are no null intersections of focal elements, K = 1.
Also cach intersection of a focal element of m , with a focal
elemant of m_ leads to a distinct set, so we can just read off m
from the body of the table:
m(l)‘) = .32
m(0,.02} = .08
m{l)‘,oa) = .48
m(Q) = .12
It is instructive to compare the belief functions of m,, m, and
m:
Bel, (0"02) = .40
Bel‘(()) = 1.00

Bel,{0,,0,} = 80
Bel,(6) = 1.00

Bel(d‘) = .32

Bel(d‘.t’z) = .40

Bel{l)‘,ﬂa} = ..80

Bel(0) = 1.00
iSince Bel‘(al.ﬂz} = Bal{d,.0,}. the belief on (0‘,02] has
‘remained constant, but in Bel, soime of the mass that
contributes to total belief on (0..02) is constrained o lie in

{9,).

Continuing with the gardener example, suppose that we
believe that the newspaper gives the simple support function

m (,a‘} = 6

news
m"ews(()A) = .4
(the newspaper is not very reliable), and the neighbor gives

simple: support tunction
mneighbov(a1) =3
mneighhov( MR
{our neighbor is old and often forgets the day of the week).

™ eigh
{a,} Lt
.30 40

(a) | @} | a2

.60 18 42
m
naws
(3] (81) 0
A0 12 .28

As in the example above, K = 1. However the set (a‘] is the
result of several distinct intersections of focal elements of
™ ews with 1oca! elements of m neigh’ and so gemr.\g the
Dempster combination m = m ém requires a

news neighbor
summation:
mi{a} = .18+ 42 + 12 = 72
m(eA) = .28
The corroborating pieces of evidence have resulted in a fairly
high support for (a‘}. even thouyh the individual pieces of
evidence each gave only meager support.

4. Belief functions for uncertain rules

Of the goals stated at the end of Section 2, we have discussed
methods to attain our first goal, to quantify our uncertainties in
the left-hand-side conditions. We now consider the second
and third goals, to quantify our uncertainties of the rules
themselves and to propagate the uncertainties to the right-
hand-side conditions. Let us focus on the rule ' A ->B. Our
refevant frame of discernment is 6 AR’ defined in (1). Since n
is logically equivalent to the elements in the set
{(0.0),(0,1).(1,1)} being true, it seems reasonable to represent
our belief on the rule r ' by a simple support function with focal
element {(0,0),(0,1),(1,1)} :

m,‘{(O‘O).(O 1).01,1)} = p,‘ ‘ ]
m"(BAB) =1. pri.

How shiould we interpret the mass p, that we assign to the
focal element {{0.0},(0,1},(1,.1)}? To ahswer this, we need to
see how our beliet on A propagates through our belief on the
rule to give a belief on B.

In Section 3, when we were considering evidence on A, we
restricted our attention to the frame of discornment ()A. Now
considering the rule A -> B, we have a different frame OAH'
Actually the two frames are not unrelated. UA is a coarsening
of ()Au' The elements in ()A can be pit into a one-to-one
correpoixlence with a partition of the elcments in ()AH. The
correspondence, which we denote by eqguality, is

a, = {(0,0).(0.1)},

a, = (1oLt D).
Notice that both sides in the first equation, a, and {(0,0),(0,1}},
represent A beiny false, and both sides in the sccond
equation, a, and {(1.0),(1,1)}, represent A being true. The
belict function

lllA{a') =P, R )

m,(0,) = 1-p,
defined on the subsets of J, can be considered equivalent to
the belief function

m, {(1.01(1,1}} = p,,
mA(()AB) =1 P

defined on the subsets of ﬂm.
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To propagate our beliel on A, which is described by m,
through our belief on the rule, which is described by m , we

can simply use the Dempster combination m = m, @ m, . 1
s

mr
{i0.0.00.1).(v 1)) | ©
D,i l-p"
{ftropv .} | () {(1.0),(1,1))
0, PP, nA(!-p,)
L}
o {0000} | O
e (pio, (t-p,)(1-p)

The resuibng m function can be easily read from the table.
Lethng Ael be the cosresponding belief lunction, we are
nterested m
Bel{"Bistrug”} = Bel{(0,1),(1,1)} (4)
= m{(1,1)}
= DAD,,.

Wa return now to the interpretation of the number P, .
Suppose that we are absolutely sure that A is true. This leads
10 n, defined in (3) with Py = 1, and substituting this value
into the (4) gives Bel{"B is true"} = P, Therefore, P, is our
beliel on B if we are absolutely sure that A is true. !

Up to this point, we have been concentrating on the rule
r, - A->B. This is the bottom ri'ghl branch of the tree in Figure
1. Given some evidence on A and some beliet on the rule r,
we have calculated a belief PP, on B. We can take this belief
on B, combine it with evidence &n C and belief on r to get a
beliet PAPcP, P, 0N D. In turn, this belief on D toge\her with
belief on r, aived betief PAPGP, P, P, on F. Also, evidence on
E together with belief on the rﬁlesr.‘ gives additional and
independent befief Peb, ON F. Combining these two pieces of
support on F gives a totd) beliet

) p,\ocp,lp,zp,a + psp,‘ . (DApcp,‘D,ap,a)(papu)
onk,

5. Discussion

We have seen a very simple and rather tentative introduction
into production systems and beliet functions. The hope here
was a germ from which grow deeper thoughts about the
problems of dealing with uncertainty in exprrt systems. There
are inany questions that need to be addressed: |s the belief
function m chosen in (2) of the appropriate lorm for
reflecting beliets on rules? The combination rule requires that
the two belief functions entering into the combination be
based on independent evidence. How do we handle
dependent pieces of evidence?, We have only considered a

B IS A A Rl i g b g g R 1

very small example. The combination rule potentially involves
intersections and multiplications of all subsets of the frame?
In a large problem, how do we handle the computational
explosion?
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. The field of computer graphics (CG) is now over 20 years old. In that time, }:ﬂ*-

~ Y

AR a rich variety of techniques have been developed for graphical display and interaction. A ;ﬂf
.. C

IO
e These techniques have been applied to such diverse areas as computer aided design and e
_ manufacturing, flight simulation, advertising, big-budget movies, video games, and of !
‘. ~ >

-~ course, data analysis. Compared to other applications, the CG techniques used for )

:f data analysis are usually quite primitive. This presentation surveys the current

. capabilities and limitations of CG, discusses how these affect its application to

data analysis, and suggests ways in which more sophisticated CG techniques could be
applied to data analysis. Particular emphasis is given to graphical interaction and

the role of workstations.
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Graphics for Specification:

A Graphic Syntax for Statistics

Paul F. Velleman
Comell University

The Data Desk is a full-function statistics package for the Macintosh personal
computer. It employs a new graphic-based syntax for specifying statistics operations and
data manipulation. This article describes the principles behind the design of this interface and

discusses some of the consequences of this design.

Computer graphics have traditionally been important parts
of statistical analyses. (Of course, "traditional graphics” in
statistical computing means “used for a decade or more by
those who could afford the hardware.") Graphics were
used primarily for presentation of results and as tools in
analyzing data.

With improving technology came animation and interactive
These were great advances in
principle, but the only contact most da analysts had with
them was watching video tapes and movies enviously at
conferences.

control of graphics.

Recently, interactive graphics have begun to come out of
the laboratory. We are seeing more displays in which the
viewer/analyst interacts in real time with the display. For
example, PRIM's of various kinds and origins, Brushing
scatterplots, and other ways to perceive higher dimensions
are becomming more widespread.

There has also been a growing interest in the graphical
control of computer operating systems. The most
widespread (and one of the cheapest at today's prices) is
found on the Apple Macintosh personal computer. The
ideas behind the Macintosh operating environment are by
no means new, but in the Mac they have been made

accessable and affordable.

Jerry Lefkowitz and I have been engaged in a project to
develop a statistics environment that uses graphic control
as the means of communication between the data analyst
and a statistics program. The program is called The Data
Desk, and is currently running on a Macintosh computer.
This article is the initial report on that project.

Graphics:

For the purposes of this discussion, 1 define graphics in a
very general way.

* Any display whose meaning or function relies to some
important degree on the physical position of things on the
screen (rather than, for example, on the numerical value or
verbal meaning of things on the screen) I will include
under the rubric of graphics. This means that if an
operation is performed by pointing to a word rather than
typing it, I consider it to be a graphic operation. If the
word moves on the page, or is made to appear, or
disappear, or change font or style, I consider that a graphic
operation. One reason for this eclectic definition is that I
can see no reasonable way to draw a line between graphic
symbols that happen to be numerals or letters and other
graphic symbols. The definition is thus an operational one;
if it is used like a graph then it is a graph (even if it looks
like text at a glance).

The Environment:
We have implemented this design on a Macintosh
computer. The relevant technical specifications are:

» Graphics hardware: A high-resolution, fast, monochrome
graphics screen (372x512 pixels). A mouse with a single
button.

* Computing hardware: 8MHz MC68000 with 128K (or
512K) RAM and 64K ROM programmed with highly

specialized support functions. Full IEEE floating point

numerics via software emulation. One (or more) 400K
disk.
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» Language: All programming in an extended 1SO Pascal.
Program resides on a Macintosh XL (née Lisa 2/10) and is
cross-compiled for the Mac. Currently the program is
about 20,000 lines, but it makes extensive use of the
support provided in the Mac ROM for menus, windows,
controls, etc.

* User's environment: The environment is a "Desktop
metaphor”. The user sees objects on an imaginary
desktop. The objects can be moved, grouped, or discarded
by dragging them with the mouse. These objects open into
windows to reveal their contents. The windows can
overlap each other and can be repositioned freely.

Syntax

The basic syntax of a command is object(, object, ...)
verb. This syntax obviates the need for a "Do it" button
and provides the opportunity to avoid many syntax errors
by inactivating commands (verbs) that would be
inappropriate for the arguments (objects) selected.

Principles:

» Object-oriented. The screen shows graphic objects
(usually as icons) that represent data analytic objects. For
example, each variable has an icon, so a particular variable
is not usually referred to by name, but rather by pointing to
its icon.

issues: The major issues here are in identifying the
appropriate set of objects. For example, one could
consider making each case an icon and graphically
gathering samples. One could consider different icons for

integer, real, text, and mixed type variables so that their
nature would be immediately obvious on the screen.
However, we need to balance additional information
against the chance of overwhelming the user. We have
settled on a relatively sparse set of objects: Variables (of a
few types), collections of variables (of a few types),
output objects (plots, tables, ctc), and a few special
objects.

It is also important to establish consistent behavior among
objects. For example, the same physical action should
have similar consequences for all objects. For example,

Opening an object (on The Data Desk, by
double-clicking on it or using the Open command) always
reveals its internal contents. An opened variable exhibits
its data elements, and opened plot is drawn in its window,
and opened bundle of variables exhibits the icons of the
variables collected together and their order. Windows
must also behave consistently. A window exhibiting data
is relocated and resized in the same way as one exhibiting a
plot.

* WYSIWYG. What You See Is What You Get. At
any time, the screen shows the current state of the data.
That is not to say that the screen is cluttered with a
spreadsheet of data values. (Rather, the data ere arranged
however the user wishes.) But one can immediately
discover the contents of a variable or the state of an
analysis by opening the approprite icon. Even data editing
is semi-graphical in the sense that the user opens a variable
icon, points to an errant data value, and types the
correcuon.

issues: One of the problems with WYSIWYG operation is
that WYDSIWYDG: What You Don't See Is What You
Don't Get. To operate on an icon, the icon must be visible

or reachable as part of a collection of icons whose icon is
visible. Data cannot be edited out-of-sight. This is either a
restriction (if you like UNIX-style operations that can
change everything on the disk with one keystroke) or an
advantage (if you want to be protected from unanticipated
consequences of global operations.)

» User-Driven operation: The user is in‘charge of the
interaction. Any operation is available whenever it is
reasonable (but see the next item). Dialogs in which the
user is asked questions are limited to specific details, and
have defaults that can be accepted by pressing a single
button whenever possible.

issues: We have taken a specific stand against
"menu-driven” packages in which the program takes
control of the dialog and the user supplies responses to a
long sequence of questions. Menu trees in our design are
intentionally short and are actively pruned to cut away
branches that would make no sense in the current context.
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« Error Avoidance: The menus (being graphical) are
dynamic. Only those operations that make sense for the
arguments selected are available. For example, if only one
variable has been selected, the "scatterplot” command
cannot be sclected. If tests or confidence intervals are

requested, the "pooled t for jt)-1y" is not offered unless
two variables have been specified as arguments.

issues: This is a very powerful way to avoid many errors
that would otherwise require error messages. It simplifies
interactions with the user, and it is a valuable pedagogical
technique. Menu items that are not active are still visible,
but in a gray type. To avoid restricting sophisticated users,
the design of commands, defaults, and dialogs must be
made with an understanding of the statistical properties of

the procedures involved.

« Customized Controls: Controls are graphic images
on the screen that serve to control the environment or the
behavior of the program, They are manipulated with the
mouse. Thus, you can puéh.a button by pointing to a
picture of a button on the screen with the mouse and

pressing the mouse button. Because they are graphic '

structures, controls can be designed to suit a specific
purpose. Why should you press a button labeled F5 when
you could press a button labeled "Delete Data File"?
Controls can also be positioned intelligently. For example,
buttons can appear directly under the cursor when the
cursor's position has been otherwise fixed.

issues: The design and positioning of controls is a
specialized area worthy of further consideration. At
present, have copied work done by others (mostly Apple)
for the Mac, but an argument could be made for designing
controls customized for some statistically-based
operations. For example a control might slide or turn
smoothly to control the turning of a three-dimensional
scatterplot. This is an area of future research.

Some Consequences:

Some of the consequences of this graphic syntax have
become clear to us only in the course of executing the
design. Others, only in the course of teaching 100

undergraduates to use the program and leaming from their
experiences. Among thp conclusions worth noting:

* There is no need for unique variable names or for
restrictions on characters or length (within reason).
Variables are identified by pointing to them. The screen is
graphically dynamic, so (for example) long variable names
are ordinarily shortened to avoid cluttering the screen. To
see the full name, point to the variable and click the mouse
button. Thus, for example,

Temperature ‘C

x?

123

Things I never told my father

are all legal variable names.

» Commands can be verbose (and, consequently, more
statistically precise) because the user is not typing them,
but rather is pointing to them. Thus, for example, the
alternative hypothesis in a test can be stated very explicitly
as, for example: 1) < py.

* Operation speed is greately improved. (Empirically, we
have observed that even touch typists who are experienced
users of interactive statistics packages can work much
faster on The Data Desk. Certainly students doing
similar assignments are completing them faster on our
program than on the widely used interactive statistics
package we have taught with to date.)

» Leamning speed is greately improved. Computer-naive
undergraduates were given a single one-hour lecture and
hands-on drill. After that they were on their own with very
little additional support needed. (Teaching assistants were
available, but were not asked computer questions very
often.)

Note: These last two points have usually been thought to
be mutually exclusive. Tutorial programs that are easy to
learn usually get in the way of experienced users. Some
programs offer 2 "Do you want verbose prompts?”
question early in the session to try to alleviate the problem.
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We have found that this environment is both easy to learn
and easy to use with no changes whatever. It appears that
this stems from the fundamental simplicity of the
interactions on the desktop. One way of viewing this is to
consider the (folk) "Law of Complexity Conservation”
which states that there is a fixed amount of complexity in a
given type of program, but it can be shifted among the
designer, writer, novice, and expert. We have tried to shift
as much of the complexity as possible onto our shoulders
and off of the shoulders of the users.

Problems:

* It is difficult to write programs (macros) in a language
that lacks a written syntax. One possiblity is to "record”
actions to play back later, but that has its own problems.
While we have a design completed for macros, this is still
an area for further research.

» This style of user interface is computing- intensive. We
find that we are driving the Mac fairly hard; anything with
less power than a 68000 might not be able to keep up. One

absolute requirement is sharp graphics. (We haven'tfelta '

need for color yet at all.) The chief bottleneck (as with
many Mac programs) is the disk drive.

Pleasant Surprises:

¢ You can really do quite alot on a $2000 microcomputer.
The Mac is a very powerful machine, even in its 128K
size. The 512K machine should handle substantial size
datasets.

* On a fully integrated system, many things come for free.
For example, it took no effort whatever to interface our
program to most communications packages for the Mac to
make up and down-loading of data possible. It was
straightforward to provide the ability to paste output and
plots into word processing documents, or to move them to
graphics programs for further enhancement.

* The environment offers some unanticipated pedagogical
advantages. For example, commands and output can be
sufficiently verbose to be statistically precise. Greek and
math symbols are available to write things in standard
notation,

Whither?

The Data Desk is now a reasonably stable environment
with a standard collection of statistical capabilties. We
have been using the program in a second-term statistics
class of 100 computer-naive sophomores with success,
and will make it available for general use by Fall term
1985. The next research area is extensions to interactive
graphics. Much of the design of these ideas is completed,
but they have not ye! been implemented, and are thus a
subject for a future talk,
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Grand Tour Methods: An Qutline

Andreas Buja

Statistics Department GN-22,
University of Washington, Seattie, WA 98195

Daniel Asimov

Computer Science Department,
University of California at Berkeley, Berkeley, CA 94720

We would like to report on research
about some advanced methods for explora-
tory data analysis based on dynamic com-
puter graphics. These methods are now
feasible because current hardware allows us

to recompute and redisplay scatter plots of .

up to 1000 data points five to thirty times
per second, thus creating the illusion of con-
tinuous motion in a plot. Our methods are
based on the simple idea of moving projec-
tion planes in high (4-10) dimensional data
spaces. That is, we design l-parameter fami-
lies of 2-planes in p-space, with the parame-
ter being thought of as time. We then pro-
ject p-dimensional quantitative data onto
these planes in rapid succession while
increasing the time parameter in small
steps, which generates movies of data plots
that convey a tremendous wealth of informa-
tion.

We call these dynamic graphics "grand
tour” methods. In our presentation, we will
show a short (5 minutes, 16mm) film featur-
ing two artificial data sets (five circles in 10-
space and a 3-dimensional torus in 6-space),
and two well known real data sets: the Bos-
ton Housing data [1] and the Particle Phy-
sics data (see [2], the well.known PRIM.9
movie). The film can be requested from the
authors.

It may be true that any single aspect of
structure in data can be isolated and
somehow displayed in a number of static
plots, but the grand tour offers a multitude
of aspects simuitaneously and in relation to
each other. It can frequernily replace hours
of staring at plols by a short inspection of a
movie and dramatically reduce the probabil-
ity of missing structure as well. In our
experience, the usefulness of this type of
display depends less on the dimension of
data space than on the intrinsic dimension
of the data. If the data form 0-,1- or 2-
dimensional manifolds (i.e. clusters, curves,
or surfaces), the human eye is able to pick
up Lhe 'gestall” almost instantly due to
motion. If, however, the intrinsic structure
is of four or higher dimensions, grand tour
methods alone will not necessarily be suc-
cessful, and other Lools will have Lo be used,
perhaps in conjunction with the grand tour.

We would like to point out an important
aspect of the grand tour whose impact is not
apparently understood in a current discus-
sion of projection pursuit contained in
P.J.Huber and discussants [3]. Projection
pursuit in its original version is the search
for informative projections through optimi-
zalion of information indices as functions of
data projections. Thus the output consists
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of one or several data plots corresponding to
global or local maxima of some index chosen
by the data analyst. In contrast, the grand
tour is NOT just another vehicle for finding
interesting static plots, and it is not simply a
competitor of projection pursuit. The out-
put of the grand tour is a MOVIE with all the
information encoded in the smooth motion
of the ‘scatter plots. We argue that the
speed vectors of data points in a grand tour
provide two additional dimensions of infor-
mation in addition to the two dimensions of
location, thus letting us perceive a full 4-
dimensional space at any given point in
time. In comparison to the grand tour,
three-dimensional rotation is degenerate in
thatl one of the two infinitesimal rotations is
held fixed, resulting in the loss of one dimen-
sion of information.

Dynamic features must be carefully con-
sidered in the design of a grand tour. To
mention a few desiderata:

- A basic requirement is (at least piecewise)
smoothness of motion Lo avoid jitter in the
movie and prevent fatigue of the human rye.
The smoother the motion, the clearer will be
the perception of the information encoded in
the velocities. ldeal smoothness is achieved
by so called geodesics, a notion which is
applicable to our contexl in the precise
sense of differential geometry. Our favorite
implementation is actually based on piece-
wise geodesic motion.

- It is important to avoid distraction due to
excessive within-screen-spin. By this we
mean rotation which takes place within the
projection plane rather than in the embed-
ding space, and which is hence uninforma-
tive if not disturbing. As it turns out, any
given grand tour can be modified such that
it avoids within-screen-spin
although the additional
expense may well slow it down Lo an unbear-
able extent.

completely,
computational

- Another desideratum is the foliowing: the
2.plane in data space which encodes velocity

‘e St o T e
POV ERS

.b. e T m - . - - - . -
at -~ . - '“ . - - Attt
e T et Al e L

CIRUC YR N
AT WA A AT W UG PO W P W

should be kept orthogonal to Lhe projection
2 plane to avoid confounding of location and
speed of the dynamic scatter plol points.
This is satisfied by Lhe above mentioned geo-
desic motion, but one can show that this
requirement confines the grand tour to a
fixed 4-space, and hence must be abandoned
if the tour is to scan 5- and higher-
dimensional space. In our implementation
we use only piecewise geodesics, which
allows us to scan any dimension of space.

We have developed a set of tools for
designing and implementing grand tours.
They can be divided roughly into two classes:

1) Parametrization of planes by Euler
angles, and design of paths which scan
parametler space.

2) Interpolation between randorly selected
planes by "shortest paths"”, and analo-
gues of splines.

At this point we need Lo introduce some ter-

minology from differential manifolds. Since

the actual computer implementation
requires a pair of orthogonal vectors in data
space for the calculation of horizontal and
vertical screen coordinates, we need the
Stiefel manifolds S, of orthonormal 2-
frames in p-space. Similarly, since we would
often like to equivalence all data projections
which can be transformed into cach other
through screen rotations, we also introduce
the Grassmann manifolds G, of 2.planes
in p-space. For implementation purposes,

we consider a grand tour as a curve on a

Stiefel manifold, but for theoretical and con-

ceptual considerations we prefer to look at it

as a curve on a Grassmannian.

The parametrization class of techniques
mentioned above parametrizes either mani-
fold by angles, similar to the way longitude
and lattitude parametrize a 2-sphere.
Angles are reals mod 27, i.e. elements of the
circle 7'= Rmod 27, and a p-dimensional
product of circles is a torus 7P . We use tori
as parameter spaces because they allow
natural curves of great smoothness and
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flexibility, namely the ones obtained by
pushing straight lines from RP into TP. If
the coordinates of a vector in RP are linearly

Currently, we are in the process of con-
structing analogues of spline interpolators
on the Grassmannian. The geodesic tour just

F IUSSL- 2 Tk

r
u‘: independent over the rationals, then the described can be considered as a spline tour
:: straight line generated by this vector is of order zero. Splines of higher order will

dense in TP; hence the resulting grand tour lead to perfectly smooth motion, but will
is dense in the Stiefel or Grassmann mani- lose some of the simplicity of the geodesic
fold if the parametrization is onto. We have tour.

examples of parametrizations of the Stiefel
variety as well as the Grassmannian. For
topological reasons they cannot be i-1. The
techniques for parametrization are borrowed
from numerical analysis and they are based
on concatenations of planar rotations
(Givens transformations) and/or reflections
on hyperplanes (Householder transforma-

! U}J"

D.Asimov discusses desirable properties
of grand tours in a forthcoming paper [5].
He states that asymptotically a tour should
form a dense subset of Gg,, whereas in
terms of finite time it should spread out
quickly on the Grassmannian. This latter
requirement is formalized by the notion of
"minimal amount of time needed to get

> v
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tions). Underlying these constructions is
the fact that any orthogonal mapping can be
decomposed into a sequence of Givens
and/or Householder transforms.

The interpolation class of techniques for
grand tour construction is based on succes-
sively sampling planes and connecting them
by motion along suitable interpolation paths.
In the tour version we wil{ show in our movie,

within an ¢. neighborhood of any 2-plane.”
Theorelical lower bounds can be given by
comparing the volume of an e-neighborhood
with the total volume of the Grassmannian.
1t is clear that this ratio becomes less favor-
able for higher dimensional data spaces.
(For volume computations on Grassmanni-
ans, see, e.g., Santalo [6]. Asimov's paper
contains tables and displays which indicate

what can be expected in various dimensions.
mian, which are described in an article by IL is apparently possible to come within 12 .
Wong |4]. They correspond to the simultane- degrees of any plane by watching 1800 ran. N
ous interpolalion of the principal angles domly sampled planes in 4 dimensions, .‘:&
5

these paths are geodesics on the Grassman-

between two 2-planes. This scheme results whereas 28 degrees are possible wilh the
in a tour which lacks smoothness al Lhe end- same number of planes in 6 dimensions. In8

points of interpolatian paths, but geodesics dimensions one can expect only 39 degrees, .:J:‘:
enjoy many favorable properties, some of and in 10 dimensions 44 degrees. Although G
which we mentioned above in our discussion these figures appear very discouraging at 'J:."
of dynamic aspects of grand tours. Another first, we should remember that this type of :.-_:
nice feature is the low computational cost discussion is somewhat academic, as it .
which is not greater than that of ordinary neglects the dynamic nature of the grand PN
3d-rotations, at least when the tour tour which lets us perceive four rather than :;‘-}:-
proceeds on a geodesic path. AL lhe end- two dimensions at a time. Second, the T

- - n.-d.’- ..' '.- - ', -
A Y PRI K

point of a geodesic segment, there is a pause
of a fraction of a second due Lo sampling a
new random plane and setting up the param-
eters for the corresponding inlerpolation
segment. In practice, viewers do not find
these pauses unpleasant, on the contrary,
they perceive ceaseless motion as
overwhelming and tiring.

dimension of the data space is less of a fac-
tor than the intrinsic dimension of the data
in determining how well we can perceive
structure in data {see above). Recognizing
the difficulty of finding structure of low co-
dimension by tour methods, we plan Lo com-
bine an interactive and dynamic projection
pursuit version with the grand tour as this
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will permit the grand tour to remain in
neighborhoods of local and global extrema of
information indices on the Grassmannian.

In the previous paragraph, we referred
implicitly to metrics on the Grassmannian
when we mentioned e-neighborhoods of 2-
planes. We seem to have an intuitive notion
of what is meant by "distance between two
2.planes”, but there are ramifications which
we will explain briefly. The best formaliza-
tion of our intuilive notion is probably given
by the maximal angle between a vector in
one plane and its projedtion onto the other
plane. A proof is necessary to show that this
leads to a metric on the Grassmannian, and
a simple way to go about it is via an interpre-
tation in terms of the Hausdorfl metric on
the unit circles in p-space, which are in 1-1-
correspondence with the 2-planes. This
melric can also be defined as the larger of
the two principal angles 6, and 6; belween
two 2.planes. In some sense this is an L.
metric  because it turns out that
(¢f+60%)'P  define metrics on the
Grassmannian, Loo, which we call L, metrics
for obvious reasons. Wong mentions the L,
case as the one which creates the Rieman
nian structure on the Grassmannian. The
other metrics for 1<p <~ generate Finsler
geomelries but these all lead to the same
geodesics. Notice that the L.-case does not
lead to a Finsler space due lo its non-
differentiable naturc, but it is obtained as
the limiting case of a 1-parameter family of
Finsler geometries.

In what follows we present a few ideas
which greatly increase the flexibility of the
grand tour as a viewing method for mul-
tivariate data. The grand tour described so
far would scan too many projections of mod
estl inlterest in many situations. For
example, in the case of predictor-response
data, one would like to concentrate on plots
of linear combinations of responses versus
linear combinations of predictor variables,
while in the case of repeated-measures data,
one would like to cornicentrate on contrasts

of treatment responses, i.e., linear combina
Ltions whose coeflicients sum up to zero. In
the same situation, one could also be
interested in Lthe dependence of contrasts on
linear combinalions of covariates. We con-
clude that, for practical data analysis, one
needs modified grand tours which offer more
flexibility in the choice of dala projections to
be scanned. For prediclor-response data
the modification consists of confining a
grand tour lo pairs of normalized vectors
which scan the unit sphere of predictor
space and response space respeclively. The
manifold to be toured simplifies to a product
of spheres. This is a submanifold of dimen-
sion p-2 as compared to 2p-3, the dimension
of the full Stiefel manifold. We will show an
implementation of this type of tour in our
movie. For repeated-measures data, one
would confine the scanning vectors to the
space of contrasts, i.e., the vectors which
are orthogonal to (1,1.1,...).

Grand tour techniques can also be
brought to bear in contexts which are rather
different from those we have considered so
far. A basic data analylic operation is the
comparison of several plots of one given data
set. The probiem is to identify cases and
groups of cases across two or more plols. To
support this operation, one can use geodesic
interpolation of two projection planes to
transform one scatter plot into the other
dynamically. This makes use of the fact that
our visual systern keeps track of the identity
of moving objects.

Obviously, there are many more possibil-
ities of applying motion graphics to data
analysis. We hope thal the grand tour will be
recognized as a useful tool and a natural
extension of 3d graphics. Conceptually,
higher dimensional motion graphics are at
least as "intuitive” or "counter-intuitive’ as
3-dimensional ones, and some important
capabilities of the visual system seem to
work in higher dimensions as well. Partial
supporlive evidence for this claim will be
provided by our film.
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: Nonlinear Least Squares and First-Order Kinetics

Douglas M. Bates
Dennis A. Wolf

University of Wisconsin - Madison

Donald G. Watts

Queen’s University at Kingston

One of the persisiemt problems with the use of nonlinear least quares programs is
specifving and coding model functions and partial derivatives then incorporating this code
iMo the program. We show how these difficulties can be by passed for the importam class of
models defined by linear svstems of differemial equations. Not onhy are the model funcrions
easilv specified but the partial derivatives can he amomatically generated 10 aflow the u<e of
sophisticated optimization algorithms withouwt an additionst burden on the user. These
models are widely used in pharmacokinetics and chemical kinefics.

An additional problem that occurs in pharmacokinetic analvsic is incorpotation of
non-homoscedastic error structures. We show how the “transform both sides” approach due
to Carroll and Ruppert can be used with this model specification siralegy.

1. Introduction

One common difficulty with using nonlinear regression pro-
grams is specifying and coding the model funciion and. possibly,
its derivatives. Specifving the model function, particulariy in the
case of implicit models defined by sysiems of differential equations,
can provide an opportunin for the user to make svniax and ran-
scription errors which take a long time 10 detect and correct. An
even more fertile ground for errors is specifying and coding deriva-
tives of the model function with respect to the model parameters.
In our eaperience, this is the single mosi error-prone stage in a
nonlinear regression analyvsis. Empirical evidence of this difficulry
is the popularity of derivative-free methods whether based on finile
difference approximations to the derivatives or other schemes such
as DUD (Ralston and Jenngich, 1978).

For one imporiant class of models. the first-order kinetic
models defined by linear systems of differential equations, Jennrich
and Bright (1976) demonstrated thai these difficulties can be
avoided. They gave a representation of the solution of the differen-
tial equations in terms of the mairix exponential and showed thal
the model derivatives can be computed simuhaneously with the
model function. We provide a different derivalion with greater
generaliny in section 2 and discuss some of the implementation con-
sideraions in section 3.

Linear kinetics models are widely used in pharmacokinetics
where they are called "linear compartment models”™ or, simply,
comparlmém models. A straightforward application of nonlinear
least squares 1o pharmacokinetic data is often inappropria(c..
though, because the assumption of homoscedasticity (constant vani-
ance) is not warranted. Weighted least squares methods are some-
times used but we have found the transformation method of Carroll
and Rupperi. (1984) to be simple and effeciive. In seciion 4 we
describe the method and its implementation. then give some exam-
ples in section 5.

2. Linear Kinelics

A firsi-order kinetics svstem, such as a compantment model,
is one described by a set of linear differential equmions. In the
compartment models, an organism is considered a< composed of
homogeneous. well-mived compariments which communicate with
each other by the exchange of material. A drug administered to the
bloodsiream could pas< from the blood to body ticsues, back into
the blood. and finallv be eliminated from the svsiem through the
kidnevs, for example. The blood would he considered as one com-
partment, other bodv tissues as a second compartment, while the
exterior of the svstem would be an implicil, third compartment.
Such a svstem and its communication paths would be represented
as in Figure 1.

Loy

kg2

ko

Figure 1: A 2-compartment model

The concentiation of the drug in the various compariments a
any time 1 would be writen

20 = iy’




In a sustem with K compariments, Y would be K-dimensional.
The kinencs of the sysiem, which describe how Ihe concentrations
change with time, are linear if we can represeni the derivatives of y
with respect 10 time as a linear funciion of y. That is, 1he sysiem
is governed by the sysiem of differential equations

30 = D oy - 2.1

dr

where 4 is the Kx A sysiem mairiv which does not depend on y or
1 and 1(1) is the driving funciion for the system which indicates how
material is being added to the svstem.

In pharmacokinetics, the driving function is usually a bolus
injection inlo a compartment, corresponding 10 an impulse or b-
function in that compartment, or an intravenous infusion into a
compartment, corresponding 10 a constant input function in that
compartment from time f to 1,. With a bolus injection, we usu-
allv consider the injection as determining initial conditions

Yo = (Yo Yo - - - -'Yo_h)r = 3(0)

but we will find it convenient 10 consider general driving functions
in this section.

These sysiems are ofien described in terms of raie coustanis
denoted &, which give the mulliplier for the communication from
compartment j to compartment i as shown in Figure 1. (By
convention, a raile constant kg is the rate constant for elimination
from compartment i). The system in Figure } would correspond to
the linear differential equations

dy, (1)
T = That iy + Ay

dy(1)
e TR P10 Rtk SP4 FXY
I we set 8, = Ay, 8, = &, and 8, = 4,5, the sysiem matrix is
then
—(8,+6.) 0,

6. -6,

The solution 10 the sysiem (2,11 with driving function (1) is

¥y = eV un 2.2
where ¢ i< the matrin determined In the comergent power series
LY
LA - '4.’ -
3 3.

and the * denotes convolution. That is,
!
oy = fe' Yde
o

In the case of a bolus injection where 1(r) is an impulse funcuon,
\he solution (2.2) collapses to

¥ = ety 2.3

Using (2.2) or the special form (2.3), we can determine the
state of the system a1 any time 1 and hence determine the N-
dimensional expected response vector 1 for a nonlinear regression
model where the response being considered is the conceniration in
one compartment and the experimental conditions are the times
L,.0=1. ... N at which this concentration is measured. How-
ever, we can also use the same technique to determine the deriva-
fives

where P is the total number of parameters. To avoid cumbersome
expressions, we will adopt the convention that a subscript p denotes
differentiation with respect 10 8 . We obtain the derivatives by dif-
ferentiating the system (2.1) 10 obtain

3,00 =AY, () = AN0) = 1, () 2.9

which is simply another linear system of differential equations with
sysiem matrix A and driving function A1)+ 3, 0). The solu-
tion is thus

3,0 = eV AN + 4, 0] (2.5)

where y(7) can be obtained from (2.2).

Returning to the system of Figure 1, suppose that the input
funclion was a bolus injection of known amoum into compariment
1. the blood. Since the "volume of distribution” for the hiood
would generally be unknown, the initial concentrations would be
represented as

35 = (8,.0) 2.6
and the solution would be given by (2.3). Equation (2.5) collapses
10

0= VAt - My, Q.n

This may still seem complicated but the pieces are rather simple.
Here

S0
]l('): (‘"’All‘"xo
X:(’) - r4:.A2(4110
1_\“) = ‘,117,43‘,4110
and

¥yl = My,

There is another wav in which parameters can enter the
kinetic system and that is as a "dead time” or lag time. The meas-
ured time, 1, may not correspond to the effective time in the sysiem
and it mayv be more realistic 10 describe the kinetics in terms of

T = (I—ID)4

where 15 is an unknown parameter. This modification is easily
incorporated into (2.2) and (2.4) to generate the required expecied
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responses and derivatives.

3. Implementation

The implememation of these methods invohes o considera-
tions: specifving the model, and performing the calculations in
(2.2) and (2.4).

The model can be specified by indicaung the roles of the
paramelers as rale constants, initial conditions, dead times, etc.
through a parameter-use matriv. We have chosen 1o use a matrix
with 3 columns, 1he first containing the parameter number. I the
parameter is a rate constant the second and hird columns indicate
the source and sink compariments with a sink of 0 indicating elimi-
nation. Inital conditions o1 other forms of driving functions are
specified with negative values in the third column and the number
of the affecied compartment in the second column. A -1 in the
third column indicates the level of an impnlse, -2 indwates the level
of a conuant infusion. -3 indicaies the slope of a hinew infusion,
eic. Thic specificanon scheme. combined with the tectartable pro-
perty of linear kinetic svstems, can he used to madel i drining
function using splines. To indwcate a lag ime, we use @ zer0 in the
second column.

As an example, the parameter-use matrin for the system
described in Figure 1 with the inital conditions (2.6) is

11 0
21 2
KD |
41 ~1}

Using this mformation and the currem parameter values. a pro-
gram can generate 4 and £(43.

Notice that this scheme allows a single parameter 10 have
multiple uses. Changing the-parameter-use matrix 10

11 0
2) 2
22 1}
3~

and re fitting the model will aliow testing of the hvpothesis tha
Ky = ke

Once A and L(7) have been delermined, the expressions in
(2.2) and (2.5) must be evaluated. Moler and Van Loan (1978)
give an extensive survey of methods for the matrix exponential and
conclude that methods based on an eigenvalue-eigenvecior decom-
position of 4 should be used when evaluations for many differem
1's are required. 1f the eigenvalues of A are real and there is a
complete sel of eigenvectors so we can write ’

A= UALT! Qa.n

with
A = diag(Ay. . .. .A}) 3.2

then
N VA T 3.3

where
1y

M = diag(c oo .c"") 3.9

which immediately gives an evaluation for impulse driving func-
tions through (2.3).

One difficuln here is that the decomposition in (3.1) does not
always exist, even for non-pathological cases, and the detection of
those cases is quite difficull.  Standard eigenvalue-eigenvecior rou-

tines such as those in Eispack (Smith e1 al., 1976) will usually
return a decomposition even in degenerate cases and the only clue
that the decomposition doesn’t exist is that U has a huge condition
number. Bavely and Siewart (1979) provide a method 1o reduce A
10 a block-diagonal form which can be used to evaluate the matrix
exponential in these cases. The method can be implemented in a
straightforward fashion but is too lengthy 10 describe here.
Assuming then that software such as Eispack code can pro-
duce the decomposition (3.1) with a well-conditioned U. it is con-
venient to pre-multiply all the system vectors by U™ ' to produce

) = Uy
£ty = U 'y
k(D = U )
£, = Uy,
K1) = U™ 'L,,(')
and, finally,
G = U A

The notation for £I_(I) and &,(1) is not consistent with earlier usage
since, for example, £,,(r) is not the derivative with respect to 0,, of
£(1). Ivis conveniem though.

Expressions (2.2) and (2.5) now become

)= Mk 1.6

and
£, = MICED + K, () (3.7
Because ¢! s diagonal, the convolutions can be evalualed as

scalar convolutions. For example, with an impulse driving func-
tion, (3.6) and (3.7) reduce 10

£ = Mg 3.8
and
= o0 A A
g = ¢ '*c,,c "Bo + ko, 3.9)
Each element in the convolulion matrix is
At At
{(""‘C‘,,("\'.‘,.J =, e e (3.10)
where
(,k:'.‘,’\/l - ‘.Al"(,)\ll-xj’n‘] (3.11)

In practice. the conditon A = A, is dewratined by comparing

J(x, =7 ,)1] 10 the relative machine precision.

Since tine implementation uses the rate constants directly and
the constante must be non-negative, the actual parameters that we
nse are the logarithm of the 1ate constants and of the unknown ini-
nal concentrations. Thiv avoids having 10 use consirained optinn-
zation methods for phhvsically meaningful parameter esnmaton. I
does produce u minor difficuln: when a particular path is not
needed for the model <ince the estimate of the log tie constant
tends 10 peganne finity. Thie Gtuation s easily detected by the

user iand the model re speaified
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,\:. 4. Heteroscedasticity
~ With measurements of physical-quantities, such as drug con- time | activity
. centrations. it is not uncommon to have the level of the noise min. counts
increase with the level of the signal so nonlinear regression model- 2 1181117
% ling with a constant variance assumption is inappropriate. A reakis- 4 | 113601
;‘ tic fitting of compariment models should include some method of 6 97652
f: allowing for changing variances in the noise. Some weighted © R 90935
e least-squares methods have been used (Jennrich and Bright, 1976, 10 | 84820
" Kramer e al., 1974, Wagner and coworkers, 1977) but the 15 76891
weights are ofien chosen on an ad-hoc basis and, more impor- 20 73342
wuntly, the weights are ofien based on the observed concentrations 25 70593
rather than the predicied concentrations. 30 67041
40 64313

Several related transformation methods, which model the

changing variance as a function of the response level and thus S0 61554
account for heteroscedasticity, have been proposed (Box and Cox, 60 59940
1964, Carroll and Ruppert, 1984, Pritchard, Downie, and Bacon, 70 57698
1977). We find the Carroll and Ruppert approach 10 be reasonable 8G 56440 -
and easy to implement. This uses the Box-Cox transformation fam- 90 53918 o
ily 110 50938 o
) 130 | 48717 L,_“
-1 150 | 45996 ol
5 M0 @.1) 100 | 44968 N
Y™ = Yogr) A=0 170 | 43602 T
' 180 | 42668 | A-1-

TR
LI

in what Carroli and Ruppert call "transforming both sides”.

For a given value of A, the estimates 8, are deiermined by
fining the wransformed data y®! 1o the 1ransformed model function
S™(1.8) resulting in a loglikelihood, up to a conswant, of

Table 1: Data fiom Jennrich and Bright (1976)

z

N

IA)=AT log(y,)—_2 log(5(8,)) “4.2) 6. ez 'QL)‘_
=1

which is then optimized over A. Since the derivatives of f*'(r,8), e, is e

with respect 10 § are easily calculated from df/df. we can use the
methods of the previous section to calculate models and derivatives e
for wransformed compariment models. 1

The loglikelihood function over a range of A can give an indi-
cation of what are "reasonable” values for A. In some cases, as
shown in the following section, there is very litile sensitivitv of the
data 10 transformation and M is essentially irrelevant. In other
cases, the value of A is sharply determined and the need for

Figure 2: A 3-compartment catenary model

PR
N s

transformation clearly defined. We examine the plor of the
loglikelihood versus A 10 determine a reasonable and “natural”
value of A (usually 0, 172 or 1) and. using the rationale of Box
and Cox (1982) or Hinklex and Runger (1984), condition the sub-
sequent analvsis on that value of A,

5. Examples

We consider three examples from the literature 1o demon-
strate the application of the transformation approach for homos-
cedasticin and the flexibilin of madel descriprion. The Brunhilda
data from Jennrich and Bright (1976) shown in Tahle } are blood
concentrations of sulphate measured by a radioactive assay. The
tesults are quoted as counts. Jenorich and Bright fit a three-
compartmen! catenary model (Figure 2) 1o these data using
ueighted least squares with the weights proponional 10 _\,‘2 and
assuming an initial concentration corresponding to a count of
2x10%. We fit the same model but with a sixth parameter of the
initial count in compartment one and using the power transforma-
tions.

,-. » e
IV . A

The loglikelihood of A, along with the data in the original
count scale, is shown in Figure 3. For A, the MLE was ahout -0.1
with wide 95% confidence limits of -2 10 1.75 so we selected A = 0
(log transformation). The fitted parameters, confidence fimits and
parameter use matrix are shown in Table 2. In addition, the

parameter estimates for A = 1 are included for comparison,

The parameter esiimates are very insensilive to transforma-
tion primarily because the relative range of the responses is not
large. The ratio of the largest 1o the smallest observation is 3.54:1
and even the logarithm transformation is fairly linear over this
range as shown in Figure 4b.

We also show the observed and predicted responses and some
of the residual analysis in Figure 4. The residuals for this model
do not show suspicious panerns hut fiting these dala with a o
compartment mode! did produce noticeable patterns in the residu-
als. The need for a three compariment model 10 adequately
represent these data was confirmed with an F-1est,
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Table 2: Parameter estimates for Brunhilda data
8,, is scaled by 10” 5
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:\ GQ Plot with Normal (0, 1) 1251 radioimmunoassay. The data from person DL, consisting of :'-"N"J
-~ N serum digoxin concenirations, is shown in Table 3. Kramer e1 al. g
g / (1.974) fit the data to the three-compartment mammillary model of pp
. o - */* Figure 5 using weighted least squares with weights proportional to E. o
p - . . S
g - .’yy exp(—0.294y,). These weights were obtained from a separate .\,‘.'
[ experiment. o
' ) ) DAY
; v }\c apain found that A = O appeared 10 be a suitable choice -':'-'::
Ry 3 o F but this time the plot of the foglikelihood ersus A (Figure 6b) indi-
Ly s cates a fairly short range of accepiable A values. The MLE is at
f E about 0.1 with approximate 95% confidence fimits of -0.1 to 0.35 .
. g T. | The fitted parameters, confidence limits and parameler use matrix
Y % : are shown in Table 4 along with the parameers estimated with
N ® » A = 1. In this example the difference between the parameters
3 n o estimated using an unweighied analvsis and those obtained from an
» ] y A - —
: -2 -1 0 1 2 lunt—— con;e;;alion
’ | _bhr. ng./m).
Normal (0, 1) OQuantiles 32;; f(;:z
Figure 4c 0.102 14.50
iy 0.135 12.50
[ 0.168 13.00
:_ 0.238 12.00
N 0.302 11.00
. 0.368 9.10
Standardized Residuals 0.502 9.60
o - NP » 0.753 5.60
.. g 1.003 4.90
= ] » 2.005 3.20
N -V VR * 3.008 2.00
- 8 »* 4.030 1.80
- ° » . 7.833 0.90
.. % 15.800 0.85
o 5
& ° - 23717 0.70
_ bt * 36.450 0.45 d
. t‘i - » 47.183 0.43 |
- E 1 - » 71.750 0.39 !
-:. 3 " Table 3: Data from Kramer et al, (1974) -‘
- n o L % Person DL Y
A [} ' S A s L n \‘_\.“:

H «

g

-0.8 -0.4 0.0 0.4

o Predicted log( Activity ) —}(—e—‘— O
Figure 4d

One poim of interest about the fitted parameters is that the
pr= initial activity assumed by Jennrich and Bright (1976), 2% 105, is
not included in the confidence limits for 8,. 1f the model is fitted
on the log scale with an initial activity of 2% 107*, the residual
sum-of-squares is 0.00287 with 16 degrees of freedom. Including

°)

Figure 5. A 3-compartment mammillary model

> 9,, in the model produces a residual sum-of-squares of 0.000878 so
e the calculated F statistic for a test of 8, = 2% 10% is 34.06 with 1
"2 and 15 degrees of freedom. Besides the formal F-test demonstrat-

ing that 2x 10 is a poor value of 8, we also found that the residu-
als for that fit exhibited poor behavior,

‘g
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'O Az a second example, we consider the digovin data from Kra-

. mer e al. (1974). A rapid (bolus) intravenous injection of I mg.
L of this drug was administered to five healthy male volunteers and
;- blood samples were periodically withdrawn and assayed using a

h s

-

-
-

»
Lo

i
>, ¥
.

PO I TV R ST
PR

R -,
I N
s .

NI L. - N
o “ B W . - st e +
- . . A R TR A A SRS SR ST WS A et
e PP O PR AR W A W I ST P -':A.. PO, YA PPN, v !\-43'4‘}1‘.‘ .) frfh\-lths;!‘;\.:‘hj;




AiCTAAEI A Mg A NS ARSI B SN S A O it Sl Mg Y

'

<

A
3

Kramer et al (1974) analysis of the logs is siriking but here the ratio of maximum
observation to the minimum observation is greater than fifty so the
Data log transfarmation is quite nonlinear as shown in Figure 7b. The
fitted values reporied in the original paper differ oniy slightly from
- 8 [ * those here. The residuals, displayed in Figures 7c and 7d, do not
"E‘ demonstrate disturping panerns.
~ *
o 0 L,
£ Kramer et al. (1974)
s o |}
oSN T Observed & Predicted
E - (’o\: L »
L]
2 n | & &
8 X S
£ { ] o 0 |
* =
§ o |
0 20 40 &0 o -
e
Time (hrs.) g n !
Figure 6a o
&
u ° u A L 1 L 1l
Lambda Lcglikelihood & 95X C.I. 0 20 40 60 80
o
- T Time (hrs.)
Figure 7s
: |
g n}
- Severity of Transformation
[] -~ o 7
X < - [
— - I | [
g S
- ga g L
m | l =
-l
c
— e 6 o |
&
-0.2 0.0 0.1 0.20.30.4 b
e w f
Box-Cox Lambda ]
Figure 6b 5
U o L | - A A L 'l

log{ Concentration }

Par, Use Est.(0) 95% cond. int. Est.() Figure 7b

0 0.2344 0.1764,0.3115 0.5387
2 1.250 0.5546.2.819 9.517
1 1.453 0.5797.3.643 12.92
3

1

]

0.7964 | 0.5967.3.063 | 1.736
0.06493 | 0.0451.0.0935 | 0.2174
19.42 16.08,23.44 | 29.05

Table 4: Parameter estimates for Person DL
Kramer et al. (1974)
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" GQ Plot with Normal (0, 1) o
o ~ N time concentration
g 5 hr. meg./ml.
y B ,’y 0.25 215.6
[ w - | » 0.5 189.2
e 8 3 0.75 176.0
. o "“ : 1.0 162.8
N b4 | L5 138.6
. N © & 2.0 121.0
3 v 3.0 101.2
8 o 4.0 88.0
, 2 v T 6.0 61.6
" ] 12. 22.0
- & 24 4.4
b .
- - —a , a8, 0.3
- Table 5: Data from Kaplan e1 al. (1972)
- -2 -1 Iv] 4 2 Subject 5
Normal (0, 1) Guantiles Par. Use | Est.(0.5) | 95% conf. int. | Est.(1)
. Figure 7c 1 1 0] 022521 0209202451 | 0.2285
~ 21 2 0.2995 | 0.1784,0.5028 0.3145
" 32 1 0.8536 | 0.5787.1.259 0.9248
: 4 1 -1 2427 227.0,259.3 243.8
- Table 6: Parameter estimates for Subject 5
] Standardized Residuals Kaplan e1 al. (1972)
A — o *
. 2 *
3 8 * " Kaplan et al. (1972)
: 3 -t b *
i x » " Data
.. » . — o
o o .
i o o *ﬁ‘.— ‘__4 —t (=] "
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; &8 =l » * g B L
3 ! - »
. c »* -
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- 1 " A L 3) e »*
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. c n
. [7]
. Predicted log( Concentration ) e * .
) Figure 7d S . . L
- 0 10 20 30 40 S0
Both these examples indicate the need for a three-
compartment model,  1In practice, the use of wo-compariment Time (hr.s‘)
models is much more common such as the example from Kaplan et FIQUT‘Q 8s

al. (1972) who swudied the pharmacokinetic profile of sulfisoxazole
in man after a bolus 2 g. infrasenous injection. The data from
Table 5 were fit 10 a two-compartment model with the resuhs
shown in Table 6.

- The loglikelihood curve, ploned in Figure 8, achieses a max-
mum a1 about 0.7 with approsimate 95 confidence limits of 0.35
10 (.95 <0 we chose a comenient A of 0.5. The estimates ciained
from the untransformed dama fit fall within the confidence hmits

‘-; obtained using the opumat A The uansformation is qune linear
~ over most of the range of concentiations, but ac the severin of the
~. tansformation increases, ve. a< A decreases, the last obseryaion
. . . . .
. becomec more imporiant in deternining the {in. Again, the resi-
. dual analysis in Figure 9 does nol reseal suspicious panerns,
.
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6. Discussion

The calculation of y,, in section 2 can easily he generalized.
For example, second derivatives represent solutions to svsiems of
the form

Yop =AY o AR T ALY A Ay p 6.

which. again, have a solution through convolution as

= Al » -
Yyp =€ “uxu ALJ-II (6.2

since, in our represeniation,

Ay =0
and

4,00

A« mentioned i section 2. the method of Bavely and Stewart

(1979) allows generalizanon 10 sxstems where there are degenerate
eigenspaces so 1! does not exist. These methods can also evtend 1o
the case of comples ergenmvalues which, though rave, cian occur n
pracuce.

In some chemical modelling situations, the rate constanis
may be given as functions of other experimental settings such as
temperamue and pressure. The Arrhenivs model i< often used for
this. The chain rule can be used 10 obtain the derivatives with
respect 1o the Arthenius pardmeters given the derivatives for the
rate constams. The important ares of modelling pharmacokinetic
parameters, such as elimination rate consiants, for entire popula-
lions is addressed by NONMEM (Beal and Sheiner, 1984). Many
of the pharmacokinetic parameters of interest are functions of the
rare constants and driving functions so the derivatives with 1espect
10 these parameters can be obtained through the results of sections
2 and 3.

Another situation thal occurs in chemical modelling is the
availabihty of measurements on more than one response. The
derivatives of the mode) functions from section 2 can be used in the
generalized Gauss-Newion algorithm  (Bates and Wans. 1984,
Bates and Watts, 1985a3) to mininiize the Box-Draper estimation
criterion (Box and Draper. 1965) which takes in acconn correla-

1ons between responses. Applicanons of multi-1esponse estimation

for sysiems of linear differential equations are given in Bates and
Wats (1985b).

The approach of differentiating the differential equations to
obtain the *“sensitivity functions® or derivalives with respect fo
mode) parameters has been used by Caracoisios and Stewart (1985)
in more genera) reactor modelling. Their methods apply to mixed
systems of differential and algebraic svstems as well as to cerain
fypes of partial differential equations.

Using transformations to deal with heteroscedasticity, as
described in seciion 4, is a powerful technique but it can resull in
using oo many paramelers. Many of the dala sets for which
compariment models are used consist of 2 dozen or fewer observa-
tions. Even adding one parameter 10 account for heteroscedasticity
could result in "over-fitting” the data. It also opens the possibility
of masking deterministic inadequacies of the model, using 2 2-
comparimen! mode) where a 3-compartment model is appropriate
say, by changing the stochastic part, that is altering A. The sensi-
tivity of the deierministic model to the wransformation for homos-
cedasticity is considered in Wolf (1985).
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COMPUTATIONAL EXPERIENCE WITH CONFIDENCE REGIONS AND
CONFIDENCE INTERVALS FOR NONLINEAR LEAST. SQUARES!

Janet R. Donaldson and Robert B. Schnabel®

Center for Applied Mathematics, National Bureau of Standards, Boulder, Colorado 80303

d
Department of Compnter Science, University of Colorado, Boulder, Colorado 80309

We present the results of a Monte Carlo study of several methods for constructing confidence regions
and counfidence intervals about parameters estimated by nonlincar least squares. We compare the esti-

mates produced by the most commonly discussed methods, namely the lack-of-fit method, the likelihood
method, and three variants of the lincarization method. The linearization method is computationally
inexpensive and produces easily understandable results, white the likelihood and lack-of-fit methods both
are much more expensive and more dificult to report. In our tests, both t::e lack-of-fit and likelihood
procedures perform very reliably, but all three linearization methods often produce gross underestimates
of confidence regions and sometimes produce significant undercstimates of confidence intervals. Among
the three variants of the linearizution method, the variant based solely on the Jacobian appears prefer-
able to the two variants that utilize the full Hessian, because it is cheaper to compute, and is always as
reliable as the other two variants and sometimes more reliable. Cases when the linearization method
confidence regions will be poor appear to be reliably predicted by the Bates and Watts parameter effects

curvature diagnostic.

1. Introduction

This paper presents the results of an empirical study
comparing several methods for constructing confidence
regions and confiddlence intervals about parameters
estimated by nonlinear least squares. The methods com-
pared are the lack-of-fit method, the likelihood method,
and three variants of the lincarization method.

The need for confidence regions and intervals com-
monly arises in data fitting applications, where a response
varizhle y, observed with unknown error ¢é, is fit to m
fixed predictor variables x, using a function f(x,:8) which
can be either linear or nonlinear in the p parameters 0.
The function f(x,:0) is linear in 0 if it can be written

J(x,:8) = x,0 = f: 7,8, i=1,..n

Iad
Otherwise, it is nonlinear. The methods analyzed in this
study are identical when f(x,;0) is linear in 8; otherwise
they are not.
\When the error ¢, is additive, the response variable
can be modeled by .

v = f(x:0)+ ¢, i=1...n,

where @ denotes the tiue but unknown value of the
parameters. The least squares estimator of @ is the
parameter value, denoted 0, which minimizes the sum of
the squares of the residuals, where the residuals, r (@), are
estimates of the random error, ¢,,

r(0) = y,— [(x,:0)

“This research supported by ARO ontrart DAAG 20-84-K-0140

IContribution of the National Bure - of Standards and not subject to copyright in the United States.

Thus,
i=- arg min S(8)

where S[8) is the residual sum of squares,
n
5(0) = 3 1,(8)* = R(9)"R(9)
1=
with R(@) denoting a column vector with i** componeni
r(08), and R(0)7 denoting the transpose of R(8).

In our study, we assume that the model is correct
and that the errors are normal, independent, identically
distributed random variables with zero mean and vari-
ance 67, i.e., distributed as N(0,621). Then, the least
squares estimator @ is the maximum likelihood estimator
of the parameters 8 of the p-variate normal density func-
tion,

L(Y) = (2ng?)= 2 of-¢Tere?)

where Y is a column vector with i component y,, and ¢
is a column vector with i component é,.

Nearly normally distributed errors are, in fact,
encountercd quite frequently in practice. This is because
measurement crrors are often the sum of a number of ran-
dom errors from unknown sources, and, by the central
limit thcorem, the sum of these errors is approximately
normally distributed whatever the distribution of the
individual errors that make up the sum.

In practice, the estimated values of the parameters ]
will not cqual the true values @ because of the random
errors, ¢, in the data. Since 8 js a random variable, how-
ever, it may be possible to indicate with some specific
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probability 1-a in what region about é we might reason-
ably expect @ to be. Such regions are known as
100-{t —a}°¢ confidence regions. A joint confidence
region about all of the parameters is defined using a func-
tion
CR, : Y= aregion in R?’
which satisfies
Pri @ € CR,(Y) | = 1-a.

Similarly, a confidence interval about an individual
parameter 8, is defined using a function

. Cl, . : Y=aninterval in R

which satisfies

Pr[ 8, € CL(Y)]|=1-a

The above definitions state that, before the data are
sampled, the probability that the confidence regions and
confidence intervals to be constructed will contain the
true parameter values is 1—a. Thus, if we repeatedly
draw samples and construct confidence regions and inter-
vals aboui the least squares estimates for each sample,
then in the long run 100-(1—a)% of these confidence
regions and intervals should contain the true values. Pro-
cedures that, for all functions f(x,:0) and confidence lev-
els 1—a, are statistically guaranteed asymptotically to
contain the true value 100-(1~a)% of the time are called
exact; all other procedures are called approximate.

Various methods have been proposed for calculating
confidence regions and intervals lor parameter estimation
by nonlinear least squares. These include several variants
of the linearization method, as well as the likelihood and
lack-of-fit methods. [See e g. Bard (1974), Gallant (1978},
Draper and Smith (1981).] We review all these methods
bricfly in Section 2. They all are equivalent, and exact,
for lincar models. For nonlinear models, only the lack-
of-fit method for computing confidence regions is exact;
the other methods for computing confidence regions and
all the methods for computing confidence intervals are
approximate. The linearization regions and intervals
appear to be the most approximate for nonlinear models,
but they also are far less expensive to compute than the
likeithood or lack-of-fit regions and intervals, and are the
predominant  methods implemented in  production
software. Some nonlinczr least squares packages, includ-
ing NL2BOL [Dennis, Gay, and Welsch (1981)], include
three variants of the linearization method, which differ
only in that the variance-covariance matrix of the
estimated parameters is approximated in three different
ways, namely

Y, = 2 (393",
V, = 2 H(®)",
or
V, = 22 1) (58)TH8)) H(B)",

where 22 = S(8M(n—p) is the estimated residual_vari-
auce; J(8) is the Jacobian of ]A(x.;.), =1, ..n, at 8; and
H{9) is the Hessian of S(0) at 0.

Sections 3-8 of this paper describe and analyze a
Monte Carlo study that compares all of these methods for
computing confidence regions and intervals on 20 non-
linear models. The study is used to empirically observe
how often the true parameter values are contained in the

confidence regions and confidence intervals constructed
using a given method. The actual percent of the nomi-
nally 100-(1~a)% confidence regions and intervals which
are found to contain the true value is known as the
ohserved coverage. The observed coverage will generally
depend on the method used to construct the confidence
regions and confidence intervals, om the pominal
confidence level, 1~a. on the degree of nonlinearity of
the function, f(x,:8), and to a small extent, on the
pumber of replications in the simulation. If the experi-
ment used to gencrate the data is repeated a large
number of times under the same conditions, and if CR,
and Cl,, are exact and the model is correct, then the
obhserved coverage wifl approach the nominal coverage.
When CR, and CI,, are only approximate, the observed
coverage will not necessarily approach the nominal cover-
age, although one would hope that the difference between
the observed and nominal coverage for a reasonable
approximate method would be small for most functions.

No similar study of this magnitude appears to have
been reported previously. The properties of confidence
regions and confidence intervals computed using the
linearization, likelihood, and lack-of-fit methods have
been analyzed by several authors, including Jennrich
(1959), Beale (1960), Guttman and Meeter (1965), Gallant
(1976), Duncan (1978), and Bates and Watts (1980).
While the litcrature includes numerous warnings regard-
ing the possible inaccuracy of the approximate methods,
it contains little empirical data to iHustrate the size of
the discrepancies between observed and nominal coverage
that might be expected. In those studies which do contain
empirical data on confidence regions and intervals, the
largest reported differences between the observed and
nominal coverage is only 9% for a 95% confidence region
computed using the linearization method, and is even
smaller for the likelihood method [Gallant (1978)). In
many practical applications, potential differences of 9%
might not be cause for concern. Evidence of much larger
differences, however, would indicate the nced for
improved mcthods. Qur results provide such evidence.

Our Monte Carlo study has several purposes. First,
we wish to determine whether the observed coverage of
the linearization method is significantly affected by how
the variance-covariance matrix is computed. Second, we
wish to determine whether the approximate confidence
regions and confidence intervals constructed using the
lincarization and likelihood methods, and the approxi-
mate confidence intervals constructed using the lack-of-6t
method have observed coverage significantly different
from nominal. In particular, we want to know whether
the frequently used linearization method is significantly
better or worse than the more expeasive likelihood and
lack-of-fit methods. Section 3 describes how we designed
our study to answer these questions. The results are
presented and discussed in Section 4. We have also inves-
tigated how cffective the diagnostics of Bates and Watts
(1980) are in predicting when the confidence regions pro-
duced by the lincarization and likelihood methods should
be reliable; this part of the study is the subject of Section
5.

Our study is oriented toward nonlinear least squares
software developers who need assurance that the methods
they implement are reasonable for a wide varicty of prob-
lems. We makc only the customary assumptions that the
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model is correct and that the errors are normally distri-
buted. We do not assume that we can change the
representation of the parameters, e.g., by reparameteriz-
ing 0 as log(8), in order to reduce the difference between
the obscrved and nominal coverage, because reparameter-
ization is not a technigue that can be routinely imple-
mentcd by software developers who have no control over
the functions analyzed. Readers interested in using
reparameterization to improve their results are refered to
Ratkowsky (1983).

The couclusions we draw from this study are
presented in Section 8. The first conclusion is that among
the variants of the linearization method, the one using V
is the best choice because it is the cheapest, and is always
at least as reliable as the other two variants and some-
times more reliable. The second conclusion is that even
the best linearization method can be very poor;
confidence regions with obscrved coverage as low as
12.4% for a nominal 957G region, and confidence intervals
with observed coverage as low as 75.09% for a nominal
95% interval are reported. In contrast, for cach of the
datasets tested, the confidence regions and confidence
intervale constructed using the likelihood method and
lack-of-fit methods are quite close to nominal. Finally,
our study indicates that the diagnostics of Bates and
Watts (1980) appear quite successful at predicting when
linearization coufidence regions will be poor. Qur recom-
mendations as to how nonlinear least squares software
should calculate confidence regions and intervals, in light
of these conclusions, also are given in Section 6.

2. Background

This section briefly discusses methods for construct- '

ing confidence regions and confidence intervals. First, we
give a very quick survey of confidence regions and
conflidence intervals for linear least squares. Next, we
describe the two different ways function nonlinearity can
aflect the solution locus. Then, we review the lincariza-
tion, likelihood, and lack-of-fit methods for constructing
confidence regions and confidence intervals when the
model is nonlinear. For a more complete discussion, sce
Bard (1974), Gallant (1976), Draper and Smith (1981), or
Donaldson (1985).

Linear least squares
When [(x,:08) is linear in the parameters 8, then
Ji{x,:0) = x, 8. Consequently, the Jacobian of F(0) is X,
an n by p matrix with ¢ row x;. If we assume that X is
of fuil rank, then XTX is nonsingular, and the linear least
squarcs estimators can be expressed in closed form by
= (XTX)"'XTY.

When ¢~ N(0,67 1), a 1001 - a)% confidence region
about @ contains those values 8 for which

SE)-58) s a?pFy, .

(2.1)
Equation (2.1) is equivalent to

(0-9)TXTX(0-8)< s2p F, .. ,, .. (2.2)
for ali linear models, which shows that the shape of the
confidence regions ahout 8 is ellipsoidal for all linear
mocdels.

A 1001~ a)"¢ confidence interval about 0 contains
those values 5 for which

6,-8,|= \/(XTX),," leyioan  (23)

where (XTX) =1 is the (5,5)* element of the inverse of
X7X. The hmm of this confidence lnlcrval cap be shown
to be those values 8, which

maximize (0,—(",)2 subject to (2.4)
. 2
S(0)=5(8) = o (ta-pr-ar) = 8 Fracpi-e

Nonlinearity and the Solution Locus

The solution locus, or estimation space, of
f(x,:@), 7=1,....n, consists of all poiuts with coordinates
expressible as

(£1x,:0).f(x4:8),....f(x,:8))

where the x,, s=1.,....n, are the fixed values of the predic-
tor variables, and @ is allowed to vary over all possible
values of the p unknown parameters. The solution locus
is planar if there exists a reparameterization of f(x,;0)
that makes the function linear in the p parameters. Oth-
erwise, the solution locus is curved.

A coordinate grid on the solution locus can be
formed by tracing the paths obtained when each parame-
ter is individually atlowed to vary while ali other parame-
ters are held fixed. The coordinate grid is curvilinear
whenever the function f(x,;9) is nonlinear in one or more
of its parameters. It is linear only when the function
itself is lincar.

Curvature of the solution locus is called “intrinsic”
curvature [Beale (1960); Bates and Watts (1980)).
Curvature of the coordinate grid is called "parameter-
eflects™ or simply "parameter” curvature [Bates and
Watts (1920)]. Intrinsic curvature is not affected by
reparamcterization.  Parameter-effects curvature is.
Linear functions have zero parametes-effects curvature
and zero intrinsic curvature. Nonlinear functions always
have nonzero parameter-cffects curvature, and can have
either zero or nonzero intrinsic curvature, i.e., a planar or
curved solution locus, respectively.

Nonlinear Least Squares

When the function is nonlinear, the least squares
estitnators of the parameters cannot in general be
expressed in closed form, and must instead be computed
by iterative techniques. Construction of exact confidence
regions and confidence intervals also is much more
difficult, and so approximate methods are frequently
used. The leading methods, lincarization, likelihood, and
lack-of-fit, are described briefly below.

Linearization methods. Lincarization methods
for constructing confidence regions and confidence inter-
vals assume that the nonlincar function can be ade-
quately approximated by an affine, or linear, approxima-
tion to the function at the solution. That is, this method
assymes that the solution locus is planar, and that the
coordinate grid is linear (hroughout the area to be
covered by the confidence regions and confidence inter-
vals, Under this assumption, linear least squares theory
tells us that_the confidence region about @ consists of
those values 8 for whieh

(o o' Vh‘(o o’sp,pn pl-a
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while a confidence interval about 0 ,J=1,...,p, consists of
those values -5 for which

[6,~8,1sV,

where V is the estimated variance-covariance matrix of
the parameters, and V is the (5,5)"* element of

n pl-al2r

Three approximations to V are frequently used.
These are

V, = 2 (30738 (A)
Vi = 2" H®), (B)

and
V, = o2 H(d)~! (J(8)7I(8)) H(§)!, (€)
where J(8) is the l:u-obmn of F(O) at @; H(®) is the Hes-
qm of S(@) at & and s is the residual variance,
9= S‘(O)/n— . Approxmntlon {A) is the most com-

wmon 1ppmx|m'\(ion to V. and is the direct analog from
linear least squares thcory. Approximation (B) can be
obtained uwsing maximum likelihood theory. and can be
viewed as using observed rather than expected informa-
tion in forming the variance-covariance matrix. Approxi-
maftion (C} is obtained by using a quadratic model of
5(8). [For a more detailed discussion of these variants,
see Bard (19741) or Donaldson {1985).] When certain regu-
larity conditions are met [Jennrich (1959}], these approxi-
mations to V asymptotically will approach the true
variance-covariance matrix of the model. Note also that
these approximation differ only when

Y 32f(x,;0)

?_:,'-( ) 20,20,

is nonzera. In particular, for linear functions, each of
these representations of Vis equal to

22 (3T = 22 (XTX)"!

Linearization methods have the advantage that their
resulting confidence regions and intervals are simple and
inexpensive to construct, and that they produce bounded,
convex confidence regions. In addition, the information
needed to construct confidence regions and intervals using
this method can be parumonmuqu summarized by the p
by p matrix V, and is well understood by users familiar
with linear least squares. Because the linearization
methods assume that both the intrinsic curvature and the
parameter-clfects curvature of f(x,;®} are zero, however,
we expect that the linearization methods could sometimes
produce observed coverages very far from the expected
nominal coverage. The re«ull- of our Monte Carlo study
show this to be true.

Likelihood method. The likelihood method is
another approximate method for producing confidence
regions and confidence intervals. The likelihood method
confidence region about 8 consists of those values § for
which

S®)-5(8)S o®p Fpu_pi-a

This is analogous to equation (2.1} for confidence regions

for the parameters of a lincar function, although when
fix,:8) is nonlincar in the parameters the resulting
confidence region is no longer ellipsoidal. The likelihood
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method confidence interval about 5, is the interval
bounded by the points which

maximize (0,-(‘5,)2 subject to

S(0)-5(0)S 8* Fypopima

This confidence interval is the projection onto the
appropriate parameter axis of the above region, and is
analogous to equation (2.4) for confidence intervals in the
case of linear least squares.

When the solution locus is planar, the confidence
regions (but not the confidence intervals) constructed
using the likelihood method are exact. In addition, likeli-
hood method confidence regions and intervals have the
desirable property that they are constructed from con-
tours of constant likelihood, and that the regions and
intervals are not affected by reparameterization of the
function f(x,:0). Thus we might expect the likelihood
method to produce confidence regions and confidence
intervals with observed coverage closer to nominal than
those “roducced using the linearization methods. How-
ever e likelihood method has several practical disad-
vantages. Both the confidence regions and confidence
intervals produced using the likelihood method can be
disjoint and unbounded because the contours of a non-
linear function can be disjoint and unbounded. The
method also is very expensive Lo use, and, when the data
arrays are large, it can be awkward to publish the infor-
mation nccessary to reconstruct the confidence region
because this information is not succinctly summarized as
it is in the case of the linearization method.

Lack-of-fit method. The lack-of-fit method cav be
used to produce exact joint confidence regions for all g of
the parameters, and to produce approximate confidence
intervals and confidence regions for subsets of the param-
eters. An exact 100(1—a)%% confidence region consists of

all values @ such that
RIO'PORE)__ o . p p
R()"(1-P(@))R(@) n-p """

where
- ~ - -
= JE)(3®)TIE)T) )T .

Note that the lack-of-fit method does not require that the
least squares solution be found prior to ronﬁruding the
confidence region. Similarly, a confidence interval for the

J* parameter consists of those values 8, for which there
nlsls values of 0,, k=1 .)—l.]+l.....p, such that for
these p parameter values, 8,

_gl
5'(’; N ) (o.lm)
S"(8y5)Mn—p)
where S"(é,u‘(;,) is the residual aum of squares obtained
when R(§) is linearly fit to all the columns of 39
excluding the j*, and S (0,(;,) is the residual sum of
squares obtained when RID) is hinearly 6t to J(8). This

interval is exact il fl(x,.0) in lincar in
8, k= 1. . s-1. s+ 1. .. .p: otherwise it is approximate.

1w- pl-a

The lack-of-fit method is even more expensive to use
than the likelihood method, and, as is the case for the
likelihood method, the information nceded to construct
the confidence regions cannot be succinctly summarized
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for publication. Also, the confidence regions and
confidence intervals constructed using the lack-of-fit
method are guaranteed to countain every minimum, max-
imum, and/or saddle point of the likelihood surface. This
makes the lack-of-6t method structurally undesirable.

3. The Monte Carlo Study

This section briefly describes how our Monte Carlo
study was constructed. Full details are provided by
Donaldson (1985).

The Monte Carlo method uses the computer to simu-
late the results of repeating an experiment many times in
order to obtain a large sample from which the statistical
properties of a system can be examined. For each simula-
tion, we {irst generated the errors and respopse variables.
The errors, ¢, were produced using the Marsaglia and
Tsang pscudo-normal random number algorithm (1984) as
implemented by James Blue and David Kahanar of the
National Bureau of Standards Scientific Computing Divi-
sion. The response variable, Y, was then constructed so
that its i** component is

y, = Jlx;:0)+e¢; .

Then the least squares estimate, 8, was calculated using
NL2SOL., an unconstrained quasi-Newton code for non-
linear least squares [Dennis, Gay, and Welsch (1981)].
Starting values for NL2SOL were set to the true values of
the parameters, 8, and the stopping criteria for the con-
vergence tests based on the relative change in the param-
eters and in the sum of squares both were set to 1075,

Finally, for each confidence region or interval
method and each derivative configuration being analyzed,
we recorded whether the true values of the parameters
were contained within the confidence regions and
confictence intervals for this realization of the data.
Determining whether the true parameter values lay
within the confidence regions and confidence intervals
about the least squares estimates fortunately did not
require that we construct the full confidence regions and
confidence intervals for each confidence level and method.
Instead. we simply calculated the smalleat confidence
jevel, [~w, such that a 100-(1 — )% coufidence region or
confidence interval constructed using the method being
analyzed will contain the true parameter values. When
w>a, the true value did not lie in the 100-(1—a)%
conlidence region or confidence interval: when wsa, it
did. The values 1 —w were obtained using the hypothesis
tests corresponding to the formulas for confidence regions
and intervals given in Section 2, and the appropriate
cumulative distribution functions; the procedures are
described in detail in Donaldson (1985). The cumulative
distribution functions were obtained from the STARPAC
subprogram library [Donaldson and Tryon (1983)].

The observed coverage, ¥,. for the particular nomi-
nal confidence level, method and system under analysis is
the percentage of the total number of realizations of the
data. N, for which < @. When N is large, the standard
deviation of y, can be approximated using the normal
approximation to the binomial distribution. In this study
we used N'=500, so the maximum standard deviation of
the observed coverage at any coverage level is approxi-
mately 2.2¢.

Note that substituting a new realization of the data
for one which could not be completely analyzed because
either (a) the nonlinear least squares algorithm did not
converge, or (b} the test statistics could not be computed
for every method being analyzed, is a form of censoring
which will bias the observed coverages obtained. In our
analysis, we adjusted the value of & for each dataset so
that every realization could be completely analyzed, and
therefore the results reported in this paper are not
derived from censored data.

We computed the observed coverage for four nomi-
nal confidence levels, 0.50, 0,75, 0.95, and 0.99. In this
paper we only include our data for the level 0.95,
although we comment briefly in Section 4 on our results
at the other levels. Data for the full study are given in
Donaldson {1985).

The references for the datasets used in our Monte
Carlo study are given in Appendix A and described in
detail in Donaldson (1985). With only two exceptions,
the functions and data which comprise our datasets have
been taken from Ratkowsky (1983), Himmelblan (1970),
Guttman and Meeter (1965), and Duncan (1978). The
standard deviation of the errors of some of the datasets
has been adjusted in order to allow us to successfully
analyze each realization of the data for cach dataset. The
two datasets not taken from the published literature are
identified as 8ACA and 9AAG. Dataset 8ACA was
created cspecially for this study by generalizing function
3 to a larger number of parameters. Dataset 9AAG
involves a microwave absorption line function taken from
a consulting session at the National Bureau of Standards
in Boulder, Colorado.

The number of parameters in the 20 datasets
analyzed range from 2 to 8 and the ratio of the number of
parameters to the number of observations range from
2/42 (o 3/5. While these datasets are often troublesome,
they are mostly real world problems that have not been
made artificially difficult.

Fach dataset was analyzed twice to allow us to
examine the cffect of increasing the standard deviation of
the crrors. In the first analysis, é ~ N(0,621); in the
second analysis, ¢ ~ N(O,(T\ )2 l), where 7 is approxi-
mately the largest number < 10 for which every realiza-
tion of the data could be successfully analyzed. The
methods analyzed in the second analysis were the same as
in the first cxcept that variants B and C of the linecariza-
tion method were excluded from the second analysis
because, when 1. >1.0, we were frequently unable to com-
pute the required test statistics using these two variants.

Computation of the linearization mecthod and the
lack-ol-fit method requires that certain derivatives be
available. The Jacobian of F(@) is used by both the
linearization and lack-of-fit methods. Variants 3 and C of
the linearization method use the Hessian of S(0) as well.
In practice, analytic derivatives often are not available.
Therefore, in our study each method was implemented
and  analyzed using  three  different  derivative
confignrations. These configurations are (1) the JSacobian
and Hessian both approximated by finite-differences, (2)
the Jacobian computed analytically and the Hessian com-
puted by finite-differences, and (3) both the Jacobian and
the Hessian  computed analytically. For derivative
configurations (1) and (2), the variance-covariance matrix
necded by the lincarization method was returncd directly




from NL2SOL. For configuration (3), it was constructed
outside of NL2SOL. For details on the formulas used to
compute the finite-difference derivative approximations,
see Donaldson (1985).

\We ran our Monte Carlo ~tudy in single precision on
a 60 bit word length computer. All subroutines extracted
from other sources were used without modification except
for NLL2SOL, which was changed for this study in two
important ways. First we disabled the two tests within
NL2SOL used to detect near singularity. Second, we used
the STARPAC front end to NL2SOL. With this front
end, the finite diflerence approximation to the Jacobian is
computed with the optimal derivative step sizes selected
using the algorithm developed by Schuabel (1981), thus
maximizing the number of correct digits in each element
of the finite difference Jacobian.

4. Results and Observations

This section presents the results of our Monte Carlo
study of the lack-of-fit method, the likelihood method,
and the three variants of the linearization method. The
section is divided into a discussion of confidence regions
and confidence intervals. IFor each, we also make a
number of observations about the results. The conclu-
sions we draw from our analysis are discussed in the next
chapter.

I'e material in this chapter includes a number of
figures. These are printed at the end of the paper.

Confidence Regions

Results. The results for nominally 95% confidence

regions constructed using each of the methods analyzed in
this study with é~ N(0,0° I) are graphically displayed in
Figure 1. For each dataset, the observed coverage is plot-
ted against the method and derivative configuration used
to obtain it.

The three derivative configurations are labeled DCJ,
DC2, and DC3 in these and the following figures and
tables, as well as in Appendix B, Here DCI1 denotes use of
finite difference approximations for both the Jacobian and
the llessian, DC2 denotes use of analytic Jacobian and
finite difference Hessian, and DC3 denotes use of analytic
Jacobian and Hessian. Since the computations required
to calculate the lack-of-fit method results and the likeli-
hood method results using derivative eonfigurations DC2
and DC3 are exactly the same, these results are displayed
together.

Figure 2 shows the analogous results for
e~ .\'(0,(11 a) I). As noted in Section 3, variants B and
(' of the lincarization method are excluded from the
analysis displayed in Figure 2 because computational
difficulties were encountered for these variants when the
variance of the errors was increased.

A conservative 957 confidence interval about the
nominal confidence level is indicated on cach plot by a
pair of horizontal lines which represent the values
100{1—a)x 4.4, where 1.4 is two times the maximum
ohserved coverage at any coverage level. This confidence
interval provides a quick means of determining whether
any of the ohserved coverages for each method are
significantly diflerent from the pominal confidence level
at the 3¢ level. When the method used to construct the

confidence regions and confidence intervals is exact, we
expect that the observed coverage for 95% of all possible
datasets will lic within this confidence interval.

Observations., Figures 1 and 2 show that the
lack-of-fit and likelihood method confidence regions are
quite reliable, and that the results are not affected by use
of finite difference derivatives. In all our tests, they pro-
duced observed coverages which seldom vary from nomi-
ual by an amount that is significant at the 5% level. In
fact, for these datascts, there is only one instance
{dataset BAAA, € ~ N(O,(n ) l)) where the difference
between the nominal and observed coverages produced
using these two methods is greater than 5%, and in this
instance, the observed coverage is greater than nominal,
not less.

The three variants of the linearization method, on
the other hand. frequently produced far less reliable
confidence regions, although, as discussed below, the
results still do not appear to be affected by the use of
finite-dilference derivatives. The difference between the
nominal and observed coverages obtained using the
linearization methods often are considerably more than
2077, which is a difference that many if not most users
would find unacceptable.

Ry comparing Figure 1 to Figure 2, it is apparent
that increasing the variance of the errors does, in fact,
increase the differences between observed and nominal
coverage for all methods. Our tests at confidence levels
0.50, 0.75. and 0.99, which are not reported in detail here,
also showed that the spread between the observed and
nominal coverage obtained using the linearization method
increases as the nominal confidence level is increased.

The large differences for some datasets between the
observed coverage of confidence regions constructed using
the fikelihood method and those obtained using the
linearization method may be explained by the difference
in the shape of the two regions. The likelihood method
coufidence region corresponds to the boundary and inte-
rior of a contour of the snm of squares surface, i.e., a con-
tour of constant likelihood, whereas the linearization
method confidence regions are always ellipsoidal. We
plotted these contours for various datasets, and the
diffcrence sometimes were very large. Examples for
datasets 3AAA and 14AAG are given in Donaldson
{1985).

Figure 1 also indicates that the observed coverage
obtained using variants A, B, and C of the linearization
method are nearly identical. The results of two-sided
paired-sample ¢-tests indicate that there is no statisti-
cally significaat differences at the 5 level between the
observed coverages obtained using any of the variants of
the linearization method with any of the derivative
conligurations. The same results were obtained for our
tests at the 0.50, 0.75, and 0.99 confidence levels.

Confidence Intervals

Results. Figures 3 and 1 provide information for
confidence intervals which is analogous to that shown in
figures 1 and 2 for confidence regions. The ohserved cov-
erages plotted are the smalleat of the p confidence inter-
val coverages obtained for each dataset. Figure 3 displays
the observed confidence interval results for nominally
957 confidence levels, when é~ N(0,6° 1); figure 4 shows
the  results  when  é~ N(O,(n G)* l), excluding
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linearization method variants B and C as was done for
the linearizaiion method confidence regions.

Observations. Figure 3 shows that for confidence
intervals, the best results are obtained using the lack-of-
fit and likelihood methods, and the worst results are
obtained using the linearization method, as was the case

for confidence regions. The lack-of-fit and likelihood
methods produce confidence intervals which seidom vary
from nominal by an amount that is significant at the 5%
level, and never are less than nominal by more than
5.0¢. Again, use of finite difference Jacobians does not
appear to affect the results for these two methods.

The three variants of the linearization method, on
the other hand. frequently produce far less reliable
confidence intervals than the lack-of-fit and likelihood
methods. Disturbing differences between observed and
nominal coverages occur when each of the variants of the
linearization method is used to construct confidence inter-
vals. The observed coverage for a nominally 95%
confidence interval is as low as 75.09%, 44.0%, and 10.8%
for variants A, B, and C, respectively. For most of the
datasets tested in our study, however, the span between
observed and nominal coverage produced by the three
variants of the linearization method is considerably less
for confidence intervals than for linearization method
confidence regions constructed about the parameters of
the same dataset. This is especially true when derivative
configurations DC2 and DC3 are used.

One reason why linearization method confidence
intervals have better coverage than linearization method
confidence regions is that, when the parameter estimates
are correlated with each other, a number of points may be

included in the linearization method confidence intervals

but not in the confidence regions. Note, however, that if
a confidence interva! was computed for the linear combi-
nation of the parameters given by the eigenvector
corresponding to the minor axis of the linearization
method confidence region ellipsoid, then the linearization
method confidence interval observed coverage should
approximately equal that of the linearization method
confidence region. In our Monte Carlo study, we actually
computed the linearization method confidence interval
observed coverage for this linear combination of the
parameters. In every case, the observed coverage we
obtained for the confidence interval about this linear
combination was approximately equal to that of the
lincarization method confidence region observed coverage.

The use of finite differences to approximate both the
Jacobian and the Hessian appears to significantly degrade
the confidence interval results for linearization variants B
and C. Figure 3 shows that, while there is no striking
difference in the results obtained using the three variants
of the lincarization method with derivative configurations
DC2 and DC3, variants B and C degrade significantly
more than variant A when using DCI, ie., finite
dificrence Jacobian and Hessian. A two-sided paired-
aample t-test was used to determine wh-ther, for a given
derivative configuration, the observed coverages obtained
using the different linearization method variants are sta-
tistically different at the 576 significance level. The
results indicate that when derivative configuration DC2
and DC3 are nsed, the differences in the results obtained
using variauis A, B, and C are seldom statistically
significant at the 57 level, but that whea the Jacobian
and Hessian are approximated using finite diflerences
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(derivative configuration DC1) then the differences in
results are often significant.

Comparing Figures 3 and 4 shows that as the vari-
ance of the errors is increased, the differences between
observed and nominal coverage also are increased, as was
the case for the confidence region results. However, this
increase is not as pronounced for confidence intervals as
for confidence regions. The results at confidence levels
0.50, 0.75, 0.95, and 0.99 also showed that as the nominal
confidence level approaches 100, the spread between
observed and nominal coverages obtained using the
linearization method is increased.

5. Diagnostic tools

The preceding section demonstrates a pressing need
for diagnostics to warn users when the commonly used
linearization method confidence region will not have ade-
quate coverage. In addition, it would be useful to have a
warning to indicate when the approximate likelibood
method may be inadequate. Bates and Watts (1980) have
proposed measures of nonlinearity that provide such diag-
nostics.

According to Bates and Watts, when their relative
measure of parameter effects curvature is small compared
to the critical value (F, ., 505)" "2, then the linear coor-
dinate grid assumption is valid over the region of interest,
and therefore the linearization method confidence region
should be adequate. Similarly, when their relative meas-
ure of intrinsic curvature is small compared to the same
critical value, then the assumption that the solution locus
is planar is valid over the region of interest and therefore
the likelihood method confidence regiou should be ade-
quate.

In Figure 5 we plot the 20 confidence region observed
coverages obtained using linearization method variant A
with analytic derivatives {derivative configuration DC3)
and é~N(0,(11 ) I) against the Bates and Watts rela-
tive measure of parameter eflccts curvature. Likewise, in
figure 8 we plot the corresponding 20 likelihood method
confidence region observed coverages against the Bates
and Watts relative measure of intrinsic curvature. The
relative curvature measures were computed at the true
parameter values using the true variance of the errors. In
these plots, we have scaled the measures of parameter
eflects curvature and intrinsic curvature by dividing the
measure by the appropriate critical value. Thus, in both
of these plots, a scaled curvature measure less than 1
indicates the relative measure was less than the critical
value, while a value greater than 1 indicates the curva-
ture exceeded the critical value.

1t is clear from figure 5 that the Bates and Watts
parameter eflects curvature measure is strongly correlated
with the obsetved coverage obtained using the lineariza-
tion method. In fact, for our data as the parameter
effects curvature increases, the observed coverage for the
linearization method confidence regions decreases nearly
monotonically and linearly as the logarithm of the scaled
parameler effects curvature. Furthermore, in all datasets
where the parameter cffects curvature is less than the
critical value, the observed confidence region is very close
to nominal, while in all cases where the parameter effects
curvature is greater than ten times the critical value, the
observed coverage is unsatisfactorily low. Datasets with
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parameter effects curvature between one and ten times
the critical value had observed confidence region coverage
between 83.27% and 91.6%. From these results, it appears
that the Bates and Watts parameter eflects curvature is a
reliable, if perhaps stringent, iodicator of when the
linearization method will produce reliable confidence
regions.

Figure 6 shows that all but one of the 20 datasets
tested in this study have intrinsic curvature which is less
than the critical value, which means that cach of these
datasets is nearly planar. For nearly planar datasets we
expected good observed coverage from the likelihood
method, and, as figure 6 shows, that is what we got. Since
none of our datasets have high intrinsic curvature, how-
ever, we do not know how the likelihood method will per-
form when the solution locus is not nearly planar. We
cannot assume that the accurate results obtained in our
study using the likelihood method will necessarily carry
over to datasets with large intrinsic curvature.

Cook, Tsai and Wei (1984) provide an example
which has scaled parameter effects curvature of 934.5 and
scaled intrinsic curvature of &4. Both the parameter
eflects curvature and intrinsic curvature of this dataset
exceed any curvature measure we observed in the 20
datascts in our study. For this dataset, we computed
observed confidence region coverages of 19.0% and 95.0%%
using the linearization method and likelihood methods,
respectively. While the linearization method confidence
region observed coverage is very far from nominal as we
would expect based on the parameter effects curvature of
this model, the likelihood method confidence region
observed coverage is not. We cannot conclude anything

from this one observation. It is clear, however, that addi- .

tional analysis of datasets with high intrinsic curvature
would be useful to further assess the effect of a non-
planar solution locus on the likelihood method.

8. Conclusions

Based on our computational study, we can draw con-
clusions about : i) the comparison between the three
variants of the linearization method; ii) the reliability of
linecarization methods for calculating confidence regions
and confidence intervals; and iii} the reliability of the
likelihood  and  lack-of-fit methods for calculating
confidence regions and confidence intervals.

When using the linearization method to construct
conflidence regions and intervals, our Monte Carlo study
has shown no clearcut difference in the observed coverage
of one variant as compared to another. Tn our tests, the
only statistically significant difference among the results
produced by the three linearization variants was in con-
structing confidence intervals with finite difference Jaco-
biaus and Hessians: here variant A was superior to vari-
ants B and . We found no empirical evidence that one
shonld prefer variants B or C, even though they may be
appealing from a theoretical point of view. Therefore we
conclude that variant A of the linearization method,
which is computed using

V, = 22 (38)T38))"" T qe.1)

is the best variant 1o use for constructing both confidence
regions and confidence intervals, because it is simpler,
fess expensive, and more namerically stable to compute

than variants B or C, which use
V, = 12 H(8

(8.2)
and
V, = 2 H(8)"' (3(8)TI(8)) H(B) !, (6.3)

respectively. Variant A is simpler and less expensive
because it only requires the Jacobian of the model func-
tion at the solution and not the additional second order
terms that are also required to form the Hessian. It is
more stable because it can be formed by inverting the
upper triangular factor R of the QR factorization of the
Jacobian rather than by calculating the inverse of the
Hessian; the former calculation can be expected to lose
roughly half as many digits as the latter in finite precision
arithmetic.

The lincarization method is not always an adequate
methoed for approximating confidence regions and
confidence intervals for the parameters of a nonlinear
model, however. The results presented in the preceding
section show just how poor the linearization method can
be in some cases. Although there are many examples
where the linearization method's observed coverage
differs from nominal by only a very small amount, there
are also many cases where the observed coverage is far
lower than the nominal. In our tests, the best lincariza-
tion method variant, A, produced observed coverages as
low as 12.4°¢ for nominal 95 confidence regions and

75.0% for nominal 95% confidence intervals.

Users will continue to use the linearization method,
however, because it is readily available in software pack-
ages and provides a concise representation of the
information needed to construct confidence regions and
intervals. The erratic results obtained in our study when
using the lincarization method lead us to conclude that
users of nonlinear feast squares software must be helped
to cautiously assess the results they obtain using the
linearization method. The results of the preceding section
show that the diagnostic tools proposed by Bates and
Watts (1980) are very successful in indicating cases where
the linearization method confidence regions are likely to
be unreliable. In these cases, more reliable methods, such
as the likelihood or lack-of-fit methods, are required to
produce accurate confidence regions or intervals.

Our study shows that the lack-of-fit and likelihood
methods both produce observed coverages acceptably
close to nominal in every test case. Although the
difliculties and cxpense associated with using these two
methods te compute confidence regions make it unlikely
that they will ever routinely replace the commonly used
lincarization method for this purpose, they appear to be a
reliable alternative that should be considered when diag-
nostics show that linearization confidence regions are
unreliable. 1t is not as difficult and expensive to con-
struct confidence intervala using the lack-of-fit or likeli-
hood methods, and we believe that producers of nonlinear
least squares software shonld consider this possibility.
(Constructing these intervals requires the solution of a
series of nonlinearly constrained optimization problems;
it may be necessary to construct special purpose software
to =olve these problems as efficiently as possible.) Per-
forming hypothesis tests using the likelihood or lack-of-fit
methods is compntationally simple for both confidence
regions and intervals, 20 we recommend that one of these
two methods be employed for hypothesis tests whenever
possible,
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) of-fit method even though it is approximate and the linearization and likelihood methods, we also have briefly .
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examined how the Bates and Watts curvature measures

lack-of-fit method is exact, because the likelihood method
has more desirable structural characteristics than the
lack-ol-fit method. Our study provides no empirical evi-
dence that the results produced by the likelihood method
are inferior to those produced by the lack-of-fit method.
This does not guarantee that similar results will be
obtained on other datasets, however. In particular, the
results of the diagnostic test proposed by Bates and
Watts showed that all our datasets have low intrinsic cur-
vature, which is precisely the situation when likelihood
methods are expected to be very reliable. The additional
dataset we analyzed with high intrinsic curvature also
produced likelihood method confidence region observed
coverage close to nominal. Additional analysis is required
to determine whether the likelihood method is reliable for
datasets with high intrinsic curvature, and to determine
whether the Bates and Watts measure of intrinsic curva.
ture is a uscful tool for indicating when the likelihood
method confidence regions are likely to be unreliable.

In addition to diagnostics, it appears that there is a
need for new methods for estimating confidence regions
that are both reliable and easy to report. We are espe-
cially interested in investigating two methods that would
result in conservative elliptical confidence regions. The
first method is to find the minimal magnification of the
(957¢) lincarization confidence region that encloses the
{957°¢) likelihood or lack-of-fit confidence region. This
would require the =olution of a constrained optimization
problem with one nonlinear equality constraint. The
second method is to find the smallest volume ellipse that
encloses the desired likelibood or lack-of-fit confidence

region. This would require the solution of a semi-infinite '

nrogramming poblem, i.c. an optimization problem with
an infinite set of constraints.

7. Summary

We have presented the results of a Monte Carlo
study comparing the linearization, likelihood and lack-
of-fit methods for constructing conlidence regions and
confidence intervals, Our results indicate that the lineari-
zation method should be construeted using the simplest
approximation to the variance-covariance matrix, (8.1),
as it is simpler, less expensive, more numerically stable,
and at Jeast as accurate as the other two linearization
variants, which are constructed using (6.2) and (6.3). We
have also given considerable evidence that confidence
regions, and to some extent confidence intervals, con-
structed using the linearization method can be essentially
meaningless.

Our study shows that the likelihood and Jack-of-fit
methods, on the other hand, produced consistently good
results for the datasets tested. However, because the
likeliiood method is approximate it is not clear that the
good results we obtained with it will necessarily be
characteristic of all datasets. Also, because of the
undesirable structural characteristics of the lack-of-fit
method, it i« unlikely to be used routinely, although in
cases where accuracy is of extreme iinportance, it may be
a uselul tool to have.
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relate to the confidence region observed coverages we
obtained in this study. Our results show that the Bates
and Watts parameter eflects curvature appears to provide
excellent indication of when the linearization method may
produce less than satisfactory results. Our results are uct
as conclusive, however, about the relation between intrin-
sic curvature and likelihood method coverage since the
solution locus for all of our datasets were nearly planar.
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Appendix
Dataset Id. p/n Reference

1 2AAA  2/12 Guttmnan and Meeter (1965)
model M. , page 628
2 3AAA  2/12 Guttman and Meeter (1965)
model 1, , page 628
3 4AAA  2/24 Duncan {(1978)
model [t page 127
4 SAAF  4/18 Himmeiblau {1970)
model 6.2-3 , page 183
6AAA  3/13 Himmelblau (1970)
model 6.2-4 | page 188
6 8ACA  4/21 None

w

Dataset Id.

7

9AAG

11AAB
12AAB
MACG
HMABG
HMAAG
15AAA
16AAL
JITAAA
1RANA
19AAA
J0AAG
JIAAA

22AAB

p/n

8/25

/9
4/9
3/t0
3/21
3/42
3/16
527
2/42
3/9
3/9
1/9
1/9

/5
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Reference

Inghold Hertel

Microwave Absorption Line Function
(personal communication)
Ratkowsky (1983)

model 4.4, page 62
Ratkowsky (1983)

model 4.14, page 77
Ratkowsky (1983)

model 3.5, page 51 and 58
Ratkowsky (1983)

mode] 3.5, page 51 and 58
Ratkowsky (1983)

model 3.5, page 51 and 58
Ratkowsky (1983)

model 6.11 , page 120 and 58
Ratkowsky {1983)

model 6,12, page 122, 123 and 125
Ratkowsky (1983}

model 3.4, page 50 and 58
Ratkowsky (1983)

maodel 4.1, page 61 and 88
Ratkowsky (1983)

model 4.2, page 61 and 88
Ratkowsky (1983)

model 1.3, page 62 and 88
Ratkowsky (1983)

mndel 4.5, page 63 and 88
Ratkowsky (1983)

model 5.1, page 93 and 102
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CURVATURES FOR PARAMETER SUBSETS IN NONLINEAR REGRESSION ‘-_
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2, )
oA
. R. Dennis Cook, University of Minnesota; Miriam L. Goldberg, University of Wisconsin t,
~
d N,
\ LY
The relative curvature measures of nonlinearity proposed by Bates and Watts (1980) —
are extended to an arbitrary subset of the parameters in a normal, nonlinear E
X regression model. In particular, the subset curvatures proposed indicate the validity -51
o, of linearization-based approximate confidence intervals for single parameters. The MR
~f. derivation produces the original Bates-Watts measures directly from the likelilhood f}
N function. When the intrinsic curvature is negligible, the parameter-effects curvature IS
e array contains all information necessary to construct curvature measures for para- o
s meter subsets. !
Key Words: Confidence regions, Curvature measures, Least squares, Likelihood.
‘;- 1. INTRODUCTION for etther I'" or I'" indicate that this
::; Confidence regions for parameters of a approximation is questionable. These ideas are
‘: normal nonlinear regression model are extended and refined by Bates and Watts
‘ commonly constructed by using linear (1981), and Hamilton, Bates and Watts (1982).
: regression methods, replacing the solution For a review of related literature, see Bates
- locus with the tangent plane at the maximum and Watts (1980) and Ratkowsky (1983).

. likelihood estimate. Such tangent plane Programs for calculating I'" and I are given

reglons are generally easler to construct than
corresponding likelihood regions. More

importantly, the elliptical contours of

by Bates, Hamilton and Watts (1983).
The material in Bates and Watts (1980)

represents an Important step forward, but

5? tangent plane regions are relatively easy to their method for assessing the adequacy of the

'; characterize and understand, particularly for tangent plane approximation applies only to

Tf one-~ or two~dimensional parameter subsets tangent plane regions for the full parameter

r which are often of interest., Likelihood vector. This method is not appropriate for
regions, on the other hand, are not influenced assessing the adequacy of tangent plane

i: by parameter-effects nonlinearity and, regions for a subset of parameters, as

f- therefore, generally have true coverage closer indicated by Cook and Witmer (1984) and

‘: to the nominal level than do tangent plane Linssen (1980). It is fairly easy to

5: regions. Under suitable regularity conditions construct examples where rt s relatively

and with a sufficlently large sample size,

large and yet there i3 good agreement between
tangent plane and likelihood regions will be

;e

the tangent plane and likellhood regions for a

.
N

in good agreement, but in any partlcular subset of the parameters. One such example is

problem the strength of this agreement is given i{n Section 2 which is a brief review of

usually uncertain. the tangent plane approximation and the Bateshk

Bates and Watts (1980) propose measures of Watts methodology. We are often interested in

»
=’

intrinsic and parameter-effects curvature for confidence regions for subsets, particularly

assessing the adequacy of the tangent plane for individual parameters. Thus, the

inability of the Bates-Watts methodology to

AN A
e

v N

approximation: Relatively small values for

both the maximum intrinsic curvature T" and assess the adequacy of subset regions reflects

1
the maximum parameter-effects curvature T

an important gap in our understanding and

LR

indicate that the tangent plane approximation ability to deal with nonlinear models. :
is reasonable, while relatively large values e
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In Section 3 we develop measures for
assessing the agreement between tangent plane
and likelihood regions for an arbitrary subset
of parameters from a nonlinear regression
model. The measures require the same building
blocks as needed for the construction of PT.
and reduce to T'' when the full parameter
vector is considered. Computationally, these
measureé require little more effort than r'
itself. Section 4 contalns several examples
and our concluding comments are given in
Section 5. In the remainder of this section,

we establish notation and briefly review

relevant background information.
A nonlinear regression model can be
represented in the form

Yl-f(xl. 8) + € f=1,...,n (1)

where y1 is the i=th response, x1 is a vector
of known variables, 8 is a px1 vector of
unknown parameters, the response function f is
a known, scalar-valued function that {s twice
contlinuously differentiable in 8, and the
errors ¢, are independent and identlcally
distributed normal random variables with mean
0 and variance 02.

The maximum likelihood (ML) estimator 8 of

8 can be obtained by minimizing the residual
sum of squares

n
RSS(8) = § (yl ~ fx,, )2

L1 @)

Kennedy and Gentle (1980) discuss methods for
obtaining 8. For our purposes we assume that
8 is avalilable,
For notational convenience, let

ri(e) = f(xl.e) and let V denote the nxp
matrix with elements f: = 9r,/38_, 1=1,...,n

r=1,...,D.
Here and in what follows all derivatives are
evaluated at 8 unless explicitly indicated
otherwise,

Various quadratic approximations to be

used in the following sections involve the pxp

matrices Hi , i=1,...,n, with elements
rs

rl - azrl/aeraes, r,s=1,..,,p. These
matrices can be written conveniently in an
nxpxp array W (Bates and Watts, 1980). The
ab~th "column" of W is the ab-th second

with elements f?b R
{=1,...,n, while the i~th face H1 of W is the

derivative vector W
ab

pxp matrix consisting of the i~th elements of

the second derivative vectors Hab'

2. CURVATURES AND THE TANGENT PLANE
APPROXIMATION
Let F(8) denote the nx!1 vector with
elements rl(e). The standard elliptical
confidence region for 8 based on replacing
F(8) with the tangent plane at 8 can be

written as

fo: #TvTve s 8%}  (3)

where ¢ = (8)) = 0 = 6 , 3° = RSS(8)/(n=p),
G = pF_{p, n=p)
and Fu(v1, v2) is the upper a probability

point of an F distribution with v, and v

1 2
degrees of freedom.

To assess the adequacy of the region in
(3), we need the standard quadratic expansion

of F about 8:

F(8) = F(B) + Vo s 3 6W & (4)

Multiplication involving three-dimensional
arrays is defined as in Bates and Watts (1980)
so that oTw¢ is an nx1. vector with elements
oTw1¢, {=1,...,n. Generally, If F 1s
quadratic over a sufficlently large
neighborhood of S and the quadratic term of
(4) 13 sufficlently small relative to the
linear term, the tangent plane region (3)
should be reasonable; otherwise, thils
approximation may be in doubt. Bates and
Watts (1980, 1981) implement this idea by
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first decomposing each column of W into its

projections onto the column and null spaces of

: - - ¢ n
Vi W m Py Wap * (I7PY) Wy = Wy * Wape
where Pv is the orthogonal projection operator

for the column space of V. With this
decomposition, the quadratic expansion (4)
becomes

s Fla 1 T, T 1 T n
F(8) F(8) + Vo + 3 ¢ W+ 5 ¢ W (5)
where W' and W" are the nxpxp arrays whose
T n
columns are wab and Hab' respectively.
Next, the adequacy of the tangent plane
reglon is assessed by using the maximum

parameter-effects curvature

T, T
l“T = max J.O;.U.LL__ /Bs (6)
[vel |2

and the maximum intrinsic curvature

T n
r" = max lffJii?gl— /ps (@)
Vo

where the maximum is taken over all ¢ in Rp.
These curvatures as well as the decomposition
of ¢Tw¢ displayed in (5), reflect different
characteristlics of the nonlinearity of the
model. The Intrinsic curvature T is
invariant under reparameterizations and is
thus a measure of the intrinsic nonlinearity
In contrast, T'
different
parameterizations can result in substantially
If both I* and ' are
sufficiently small, the tangent plane region

of the solution locus,

depends on the parameterization:
different values of T'.

(3) should be adequate,

More specifically, for a tangent plane
region of the form (3), Bates and Watts (1980)
suggest that the llinear approximation should
be adequate {f r" and r" are both small
compared to the guide ¢ = 1//5;?57—;:53 .

When r" or r‘ i{s greater than c, the linear
approximation and the clrcular approximation

that is the basis of the curvature mecasures

%

-
- o ¥

&
*, &5

TN

2o
P

both break down within the tangent plane
region. Thus, Ratkowsky (1983) proposes that

K

c¢/2 be used as a cutoff level, beyond which SO

the tangent plane reglon is presumed ALY
R

inadequate. }-:\f

R
=

To demonstrate that the Bates-Watts
methodology can fail for subsets of 9, we
consider the Fieller-Creasy problem in which
the ratio of the means of two normal
populations is of interest. The corresponding

nonlinear model can be written as

flx;, 8) = 0,x, + 8,8,(1~x) (8)

where x1

the values 1 and 0 for populations 1 and 2,

i1s an indicator variable that takes
respectively. For convenlence we assume equal
sample sizes for the two populations n‘-nz-nlz
and, without loss of generallty, we assume
that 02 is known,

The model given in (8) is intrinsically
1inear so that I'" = 0.

Witmer (1984) show that

Further, Cook and

L (02 2 &
- v20{(e5 + 1)7° « |92|} ©)

le,} /n

In this case the Bates-Watts (1980) guide for

judging the adequacy of the tangent plane

approximation is ¢ = (x(m;Z)]“l/z

where x(a;v)
1s the upper a probabllity point of the chi=~
squared distribution with v degrees of
freedom. However, it is clear that standard
methods can be used to form exact confidence

intervals for © the mean of the first

1'
population, regardless of the value of t'. In
other words, the tangent plane and likelihood

regions for 0, are identical for all FT.

1

A similar phenomenon occurs In connection
with 62. Let r = ozx(u;1)/ne$. Assuming that
r<1, Cook and Witmer (1984) show that the 1-a

likelihood region for 92 can be written as

(o, ¢ lr(1mr) + ro2}'"2)s0r) (10)
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The level associated with this region is
exact. The corresponding tangent plane region
is

N ~2,1/72

o, * (r + rey) (11)
Clearly, (10) and (11) will be close only if r
is sufficiently small. For any fixed value of
r, however, rt may be large or small depending

on the value of 6, so that again the Bates~

Watts criterion fzils to reflect accurately
the agreement between the tangent plane and
likelihood regions for a parameter subset. We
will return to this example at the end of the

next section.

3. SUBSETS

Let L(e.cz) denote the log likelihood for
mode! (1), and partition

eT-(er, 8;) where e1

i=1,2. The standard likelihood region for 8

is a p1 x 1 vector,

2
can be written in the form (Cox and Hinkley,

1974, p. 343).

{ez:z[L(a.;z) n L(g(e,), 02.32(02))]501 (12)

where p, a selected positive r~onstant, is used
to set the nominal level and (gT(e?), 02(82))

represents the vector~valued function that

maximizes
L(91,e?, 02) for each value of 8,. Evaluating
(12), the likelihood region for 8_ can be

2
written equivalently as

n
one - 2, "2
{o,:n 108[§-1(Y1 £,(8(0,), 6,))°/ne’Jsp} (13)

Clearly, the form of this region is governed
by the vector~valued function h(e?) = F[g(ez),
82). If h is essentially linear over a

sufficiently large nelghborhood of 8 the

2'
contours of (13) will be elliptical and we can

expect (13) and the corresponding tangent

plane region to agree; otherwise these regions
will tend to be dissimilar., To determine when
these regions are in substantlal agreement, we
investigate the behavior of h by using the
method described in Section 2, except that F
is replaced by h which, in combination with

Y - (yi), contains essential information on

8 Thus, in exact analogy with the Bates-

witts development, we will produce expressions
for the curvature of the solution locus
submanifold defined by h. Where necessary for
clarity, we refer to this as "subset
curvature", Similarly, "subset parameter-~
effects", and "subset intrinsic" refer to the
decomposition of the subset curvature into
components in the submanifold tangent plane
and its orthogonal complement.

Let uT(BZ) = {a;08,)) = (aT(ez). e;), let
A1 denote the pxp2 matrix with elements
aul/aezj,

A2 denote the pxpexp2 array with i-th face

A i’ 21
3 u1/302J362k. j,k-l,....pz. We assume, of

1=1,2,...,P, j-1,2.....p2. and let

i=1,2,...,p; the elements of A are
course, that g is a twice continuously
differentiable function of 92. With these
definitions the straightforward quadratic
approximation of h(02) about §_ can be written

2
as

h(92) ~ F(8) + VA1¢2 (14a)
T,T,
+ é¢2A‘HA102 (14b) [QR'))

k¥ T
¢ BV(e,8,4,) (1lc)

where 02 - 02~02.

3.1 Refining Equation (14).

For the quadratic expansion in (14) .o be
useful, we need to develop expliclit forms for
A1 and A2 to produce a }eexpresslon of (14)
that displays the (subset) parameEer*erfects

and intrinsic components of h at 9 To avoid

Py
interruption, the details of this development
have been relegated to the Appendix. Here we

discuss the final form.
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The final form of (14) is based on the
assumption that the intrinsic curvature of F
at 5 is negligible., That assumption is
somewhat restrictive but it 1s valid in the
important class of problems where the
parameters of Interest are nonlinear functions
of the location parameters in a linear model.
In any event, we judge the practical
advantages of allowing for substantial
intrinsic curvatures to be minimal since
experience has shown (See Bates and Watts
1980, and Ratkowsky 1983) that they are
typically small. Of course, r" can and should
be evaluated in practice so that this
assumption can be checked.

In the remainder of this paper we use C(M)
and C'(M) to indicate the column and null
spaces, respectively, of the matrix M; the
corresponding orthogonal projection operators
will be denoted by PM and P;, respectively.

In their development of the intrinsic and
parameter~effects curvatures for the full
parameter vector, Bates and Watts (1980) found
it convenient and revealing to work in
transformed coordinates. Similarly, the
quadratic expansion (14) is most easily
understood in terms of these same transformed

coordinates: Let V = UR denote the unique QR*
factorization of V where R is upper triangular
and the columns of the nxp matrix U form an

orthonormal basis for C(V). Next, partition R
as

R R12

(15)
0 R22

where Rli is Py X Py i=1,2. Transformed
coordinates ¢ can now be defined as

;T = (;T. ;g) - oTRT 30 that

o Ryt * Ryp ¢ (16)
and

0, = Ry 5 (a7

i g Bon W TR B vy s Y ey

In the following any quantity with a tilde
added above indicates evaluation in the ¢
coordinates., Thus, for example,

V-uand#=RTWwRr. Partition the 15
th face ﬁ of W as

i

. [w W
wo&f 1YD T2y e (1®)

1
121 122

1
E ]

where the dimgnsion of wijJ is pJ X pJ, J=1,2.
Eext. define H22
W with i~th face "122 12
to be the nxp‘xp2 subarray of W with i=th face

w112’
v = (v1,v2) and U = (U1,U2) where U1 and vi

to be the nxp2xp2 subarray of
W and similarly define W

{=1,...,n. Finally, partition

are n x p, matrices.
With this structure, the quadratic
expansion of h can be reexpressed

informatively as

h(s,) = F(0) + U,3, (19)
. é&;[Puzllﬁzzliz (19p)  (19)
N TETR (19¢)
- u o0, 1MW, ,]e,

where the brackets [-][-] indicate column

(sample space) multiplication as defined in
Bates and Watts (1980), and discussed briefly
in the Appendix. Term (19a) describes the
—2. Since C(UZ) - C(P;
V22, this ?lane is simply the affine subspace
F(8) + C(P, V2). This is the same as the

subapace ohbtained when using the tangent plane

plane tangent to h at 9

approximation to form a confidence region for
92. In other words, the confidence contour
based on the tangent plane approximation will
coincidr with those based on substituting the
linear approximation of h into (13), as
expected.

Term (19b) contalns the projections of the

columns of W ont~ the plane tangent to h at

22

62. Thus, this term reflects the {(subset)

parameter~effects curvature of h in the
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direction 02. The maximum parameter—effects
curvature r; for the subset 62 can now be
defined as

1 T ~
rg(e,) = max||d [Puz][w22]d||/525 (20)

where the maximum is taken over all d in
D = {d:deR 2 » 11e]] = 1}. Stnce ;2 is a
linear transformation of 02 as described in
an, r;(ez) will be the same ln both
coordinate systems,

To further understand (20), partition the
i~th face A, of the pxpxp unscaled parameter”

i -
effects curvature array A = [UT][H] as

A A

[ A A

in 112

Ay = \ (21)
i1 122

where the dimension of AlJJ is prpJ,
j=1,2, i=1,...,p. Next, let A22 denote the
p2xp2xp2 subarray of A with faces A

i22’
1-p101,....p. Then

[puznﬁzzl - [u,][a,,]

and < T
rge,) = mgx||d Rypdl| B3 (22)

In this form it 1s clear that the maximum
parameterreffects curvature for the subset
problem depends only on the behavior of the ;2
parameter~curves. The elements of A22 can be
used to understand the behavior of these
parameter~curves in terms of arcing,
"compansion", fanning and torsion, as
described in Bates and Watts (1981).

Term (19¢) is clearly in C(V,) and is thus
orthogonal to the subspace tangent plane.
This term then reflects the intrinsic
curvature of h at 82 so that the maximum

intrinsic curvature can be defined as

r(e,) - mgx;|(aTu§][w12]d||z/52s (23)

Note that (23) contalns the extra factor 2,
corresponding to the absence of the factor 1/2
in (19¢c).

This curvature can also be ecxpressed in
denote the

12
p2xp1xp2 subarray of A that has faces A112.

terms of a subarray of A. Let A

i-p1#1,...,p. Then A12 - [U;][H‘z] and
ri(e,) = max||(dTI(A 14| |2/E
s 2 12 st

- wax|]

d.A . d||2/p s (24)
. S ne 2
J=p 1

where dJ is the (J*p1)ﬂth element of d.
Interestingly, the intrinsic curvature for the
subset problem depends only on fanning and
torsion components of A; compansion and arcing
play no role in the determination of F:. The

fanning and torsion terms of A depend in part

on how the columns of V are ordered. 3ince we
have assumed that the last p2 columns of V

correspond to 8 it is the fanning and

’
torsion with respect to this ordering that are
important. )

If both r; and F; are sufficiently small,
the likelihood and tangent plane confidence
reglons for 92 will be similar; otherwise we
can expect these reglions to be dissimilar.
Following Bates and Watts (1980),
¢ = [F‘m(pz,n--p)]-x/2 can be used as a rough guide
for judging the size of these curvatures. As
noted earlier, our experience indicates that
curvatures must be substantially less than c
to Insure close agreement between tangent
plane and likelihood regions. This will be
{llustrated in sections 3.3 and 4.

Finally, we combine the intrinsic and
parameter-effects components of (19) to define

the total curvature rs(ez) of h at 8, as

T 2
rg(e,) = /p,s mgxl||d A22d||

TICR TS TI S A €L




As will be demonstrated in the next
subsection, the total supset curvature rs may
be more relevant than both r: and r;. For
example, it is possible to have r; < ¢ and
F; < ¢ while FS > ¢. In such situations r;
and F; may incorrectly indicate that the
tangent plane approximation i{s adequate, while
rs correctly indicates otherwise.

When the full parameter 8 is of interest,
we have 8, = 8 and p2 = p. In this case, the

2
subset intrinsic curvature (24) is zero, A

is the Bates~Watts parameter—effects ar‘r‘ay?2

and both (22) and (25) represent the maximum

parameterseffects curviture for 8. Thus, our
derivation based on the likelihood reproduces
the primary quantity developed by Bates and

Watts (1980).

The main concluslon of this sectlon is
that the unscaled parameter—effects curvature
array A for the full parameter contains all
necessary information for evaluating the
adequacy of tangent plane confidence regions
for certain subsets of 8. For example, if the
last parameter ep is of. interest then r;(ap)

is simply s]apppl where a {s the (J,k)~th

i3k
element of the i~th face of A, Similarly,

p-1
2 172
121 30 1p) (26)

Thus, companslon and fanning are the only

rg(ep) = 2s(

effects that are relevant to an assessment of
the agreement between likelihood and tangent
plane confidence regions for a single

parameter.

S— r:

and consequently ep ifs the only single
parameter for which curvatures can be
constructed from a given parameter=effects
array A. The A-array for other orderings can
be constructed by permuting the columns of V
and beginning agaln, of course.

Alternatively, a computationally more
efficlent method for obtaining the Amarray In
a rotated coordinate system can be constructed
as follows. Let ¢ = Z¢ where Z is a selected
pxp permutation ma:rix. In what follows, the
subscript z added to any quantity indicate
evaluation in the coordinates ¢z. Clearly,

*
T T, tevu'T

Vz = VZ = URZ". be an orthogonal

* * T
matrix such that R = U RZ

is upper
triangular. Since the QR-factorization of Vz
is unlq:e, it follo:s that vz = Usz where
Uz = UU and Rz = R . Using this structure it
is not difficult to verify that

A, - (u*)[u"a™T] (27)
Thus, to find Az. the parameterreffects
curvature array for the rotated coordinates
°z' we need on}y the pxp matrix U' to
diagonalize RZ . A single call to LINPACH
(1979) routine SCHEX produces R, [U'T][Q] and

the information necessary to construct U .

Py
l'l L 3

re N
[

3.3 Fieller-Creasy Again

To apply r: and r; in the Fleller-Creasy

problem when 6, {3 the subset of Interest, we

2
require only the 2x2x2 parameter-effects

curvature array A for

SN
. ]

vV = (x+;°(b~x), gl(b“x)]

3.2 Computation
Recall that the developments of this

0 alaga,

e,
U

'y
s

where x is the nx1 vector with elements x1 as

section are based on the assumption that the defined following (B8) and b is an nx1 vector

of one's. The faces A1 of A are (Cook and

last p, columns of V correspond to the
parame;ers of interest. This assumption is Witmer, 1984)
necessary to malntaln the collective tdentity
of 9, as indicated in (17). This implies that

2
the ordering of the columns of V is critical
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A1 - — - . (28)

. 0. {n(1+6.)1"2 |1 w20

\ 1 2 2

"

- and N

N Ao = A78, (29)
fn
A
_\ Reading directly from this array we have
? : rs(ez) - ol3222|

B . 2%, el (30)

5 ~2y1/2
g /e, | (1« 05)
and
- n
rg(e,) = 2sfa,, .|

R S L N (31)

. 5 24172
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Recall that we are assuming ¢ to be known in

.

this example so that the guide for assessing
the magnitudes of T_ and I} is e=(x(a;1))"172,
From (30) we see that r:(ez) will be zero

only if 62=0; in this case

]

T

3/2

r:(ez)-z o//nl8,| < c or, equivalently,

()
v

r o= 202x(a;1)/n9$ < 1/4 is necessary for the

subset intrinsic curvature to be less than the
guide. Further r < 1/4 is a sufficient -
although not necessary - condition for both
F;(ez) and r;(ez) to be less than ¢ when 82 is
. arbitrary.

_ Next, using (25) it follows that the total

y subset curvature s simply

‘ 3/2 -
. rge,) =2 c//ﬁlell (32)

and thus rs(ez) < ¢ If and only if r < 1/1,
When r > 1 the likelihood region for 02 will
be either the complement of an interval or
else the entire real line; otherwise this
region will be the interval given in (10). 1In

this example, the total subset curvature

. recovers the critical quantity r as introduced

in section 2, and the condition rs < ¢ insures
that the tangent plane interval (11) will in
fact be approximating a ltkelihood interval
rather than some dissimilar region., This
condition also provides for an added measure

of agreement between these intervals since it
is equivalent to r < 1/k rather than simply

r<i,

Applying (22) and (24) when 9, is the
subset of interest gives rg(e1) = r;(e1)=o, as
expected. Notice that this conclusion cannot
be obtained by inspecting the A array given in
(28) and (29). As mentioned previously,
different subsets in general require different
orderings for the columns of V and thus
different coordinates. This is the case here,

Finally, we consider the special case
A1. 82) = (3,0) and
r = .428, These conditions correspond to
n = 26°. From (9), T7=.33 ¢ 41 = x~1/2
(.05;2). From Figure 1 (Cook and Witmer
1984), we see that the likelihood region,

characterized by (8

whose level is exact in this case, does not
seem to be adequately approximated by the
tangent plane region for small values of 91.
Further insight into this problem can be
galned by inspecting marginal regions for 61
and 02. Generally, marginal reglions for
subsets can be obtained by projecting all
points in the joint region onto the
appropriate subspaces. The projections of the
regions in Figure 1 onto the e1 axls show that
the likelihood and tangent plane intervals for

61 will be identical, as expected. rhe
projections onto the 82 axls show that the

resulting 98.6 percent likelihood interval
will be about 60 percent longer than the

corresponding tangent plane intervall This
dissimiiarity is clearly indicated vy
ro(e,) = .67 > .1 - 2 Loty

Our experience leads to the following
heuristic characterization of the problem

described in the previous paragraph. Consider

a pz“dlmenslonal subset 6,_ with guide

]‘1/2

cza(Fa(pz,n~p) and partition
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82 - (82‘, 822) where 921 is p21x1. i=1,2.
The gulde corresponding to the confidence
region for 921 obtained by projecting the
selected 1~a region for 8

172 2
ey ” 02(p21/p2) , i=1,2. When the subset

is simply

curvatures for 6 are large relative to ¢

21 21
and the subset curvatures for 622 are near
zero, it can happen that the curvatures for 92

are moderate, In such cases the curvatures
for 92 can provide a misleading indication
that the tangent plane and likelihcod regions
for 82 are in acceptable agreement. As hinted
above, this problem might be overcome by
requiring that all subsets 92‘ of 92 have
curvatures less than the respective guides
c21. When 82 = 8 this added requirement seems
to represent a useful fine tuning of the basic

Bates~Watts methodology.

4, ILLUSTRATIONS
In this section we present several
numerical examples to illustrate selected
results of the previous sections.

For the first example we use the
Michaelis~Menton model

£, o= e1x1/(92~x1) (33)

in combination with the 12 observations
reported in Bates and Watts (1980). Figure 2
gives 87 percent tangent plane (broken
contour) and likelihood (solid contour)
confidence regions for (61,92). Here and in
the following examples the levels of displayed
bivariate confidence regions are chosen so
that the corresponding univariate marginal
regions have a nominal 95 percent coverage
rate. It seems clear from Figure 2 that the
tangent plane region for (01,92) is not an
adequate approximation of the likelihood
region, although interpreting the Bates®Watts
guide directly as the cutoff value would lead
to the opposite conclusion, since

r* = .598 < ¢ = .635. The subset curvatures
for A and 8, are listed in Table 1; the

1 2
rorresponding guide Is ¢ = W49, Again, the

curvatures are less than the guide while the
marginal likelihood regions do not seem to be
well represented by the corresponding tangent
plane regions. This reenforces our previous
remark that curvatures must be substantially
less than ¢ to insure close agreement, With
this interpretation we see that all curvatures
successfully indicate the dissimilarity
between the various likelihood and tangent
plane regions in Figure 2.

Figure 3 gives 88% likelihood and tangent
plane regions for (61.92) obtained by using
model (33) and the 7 observations reported by
Michaelis and Menton (1913). For these data
r' = .079. This value and the subset

curvatures reported in Table 1 are relatively

small, indicating reasonable agreement between
the regions displayed in Figure 3.
For our next example we use the

exponential model

fi - 01(1-exp(62x1)] (34)

in combination with the 6 observations
reported in Draper and Smith (1981, p. 522.,
data set 3). In this case r' - 1.92 clearly
indicates the dissimilarity between the 88
percent regions for (81,62) shown in Flgure U,
However, the 95% marginal regions for 02 are
in close agreement, while the agreement

between the marginal regions for 6, seems less

than adequate., These conclusions ;re clearly
indicated by the subset curvatures
rs(ea) = ,069 and Fs(61) - .314 which may be
Jjudged relative to the guide ¢ = .360.

For the three=parameter asymptotic
regression model

fi =0, + Ozexp\eaxi) (35)

and the 27 observations reported in Ratkowsky

(1983, p 101, data set 1), we obtain I'' = 1.53.
The corresponding guide {3

-1/2
]

e~ (F OS(},ZH) = .58 . This suggests “hat

=
>
l"
r
L4
N

o
0
-
.
‘o
D




. AD-A166 919 PROCEEDINGS OF THE SYMPOSIUN ON THE INTERFACE OF 274
COMPUTER SCIENCE AND STA.. (U) KENTUCKY UNIV LEXINBTDN
DEPT OF STATISTICS 84 MAR 86 N@@81i4-85-G-0

UNCLASSIFIED B 12/4




[, o 2k ST RN A, - s AT A TR AN Y, e, A T e T N N T N S e S N

.
e
»

~N
Uy
3

o

" = = K g0
t ! :-3‘ m

e

Ly T

)
(3

|

MICROCOPY RESO! TION TEST CHART

s o7 2

3

o

- -

-

-
]

RS TR B R I T T e et P e : B N e ) -
e e e e e R T e T



ig AL St h O AT A e Ak W ST PN P o In ST 2 - S S e e . 1) s A 2 ISFA

\ the 95 percent likelihood region for
p o7 - (01.82.03) cannot be adequately
approximated by the corresponding tangent

v
s

plane region. The subset curvatures for

(]
P

selected subsets of 0 are listed in Table 1.
From these curvatures alone we would reach the
following conclusions: 1) The likelihood and

o2, s

tangent plane regions for 8_ are in very close

agreement. 2) The marginaf regions for 01
- and 03 will be noticeably different, but the
. agreement 1{s probably adequate for most
5: purposes. 3) The usual 95 percent tangent
plane regions for (01,93) and (62.93) should

be used for only very rough analyses, although

s

lower level regions may be acceptable

replacements for the corresponding likelihood

regions. These conclusions are supported by
3) and (01,03)
shown in Figures 5 and 6, respectively.

¢ a
.

the 86 percent regions for (62,6

For our final example we again use the
asymptotic regression model (35), this time in
combination with the 9 observations reported

DA LY~

P
]
-

by Hunt (1970). Subset curvatures for 4

G parameter subsets are listed in Table 1. The

subset curvature for 83 is small, indicating

‘l'l‘)"

good agreement between the corresponding

likelihood and tangent plane regions. The

subset curvatures for the remaining subsets,

P

particularly (62,93), are large.
The 87 percent likelihood and tangent

« e

plane confidence regions for (02.93) are given

in Figure 7. The large total curvature,

rs(82,63) = 36.4, correctly indicates that use

of the tangent plane region as an
approximation of the disjoint likelihood

‘l

region would be a disaster for this pair of
s parameters, In fairness, however, it should

be recalled that the approximations used to
. derive the subset curvatures are local so that

‘l

LN

rs(e1.02) is responding primarily to the
disagreement between the tangent plane region
and the portion of the likelihood region that

AL

contains 8, Similar comments apply when only

92 is of interest.

& é

From Figure 7, there is reasonable

. _-.‘\* », \‘_;-_;.

agreement between the tangent plane and

likel ihood reg{ons for 83, as indicated by the
small curvature ra(°3) = ,095. It can be
argued justifiably, however, that this correct
indication from the curvature is largely
fortuitous since the curvatures do not
recognize the contribution of the smaller
piece of the likelihood region for (62,93) to
the likelihood region for 03. Under this
argument, the subset curvature measure for 6
has falled to indicate the dissimilarity
between the tangent plane region for 63 and
the likelihood region (~,0191,0) obtained by
Eslng only the larger subregion that contains
8.

The reason that the curvatures give some

3

inappropriate indications in this final
example {s that both the linear and quadratic
approximations to the model function fail,
This fallure is evident from a very low Hz
from the regresasion used by Goldberg, Bates
and Watts (1983) to obtain numerical
curvatures, and from related measures of "lack
of quadraticity" explored by the present
authors. In cases where the quadratic
approximation to the model function is poor,
curvature measures based on that approximation
may not be meaningful.

Nevertheless, these subset curvature
measures represent an important advance in our
understanding of nonlinear models, and provide
useful information about the adequacy of the
linear approximation when the quadratic
approximation is appropriate. Further work is
needed on methods of identifying cases where
the quadratic approximation may fail.

5. CONCLUSIONS

The subset curvatures developed in this
paper appear to be reliable indicators of the
adequacy of tangent.plane confidence regions
for most nonlinear models., In particular, the
curvature for a single parameter is a useful
tool for assessing the agreement between

standard large sample confldence intervals and
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corresponding marginal likelihood regions.
This ablility to deal with subsets greatly
extends the usefulness of the Bates~Watts
methodology.

Because the original Bates~Watts framework
applies only to the complete parameter vector,
guldelines developed in that framework can be
misleading when the adequacy of the linear
approximation is very different for different
subsets. To ensure good agreement between the
tangent plane and likelihood reglions, the
maximum curvature must be considerably smaller
than the Bates~Watts guide. However, this
criterion can be too stringent for certain
parameter subsets if the whole-parameter
curvature r‘ is used. By contrast, the subset
curvature describes the shape of the
likelihood region in the parameter subspace of
interest. Thus, the subset curvature is more
directly relevant to the tangent plane
adequacy question and, based on the examples
described above, is evidently more accurate,

The practical usefulness of the methods
described here depends, in part, on their ease
of implementation. The subset curvatures for
any selected subset can be computed directly
from the Bates4Watts parameter-effects
curvature array. Thls array can be obtained
efther analytically (Bates and Watts, 1980) or
numerically by using the procedure given in
Goldberg, Bates and Watts (1983).

The usefulness of the subset curvatures
depends also on the restrict&on that the

intrinsic curvature of F at 8 1s small. This

restriction is not of great practicatl
importance since it has been found to hold in
most cases, Nevertheless, a unified approach
which incorporates the intrinsic curvature
component might offer further Insight in some
situattons.

Another area for further research is the
development of measures that indicate when the
subset curvatures themselves may be unreliable
due to the failure the =econdeorder
approximation to the model function. While

the possibility of such failure {s of concern,
the class of models adequately described by a
quadratic function is considerably larger than
the class for which the linear approximation
alone is adequate.
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APPENDIX

Derivation of Equation (19)

To develop equation (19) from equation
(14), we first require explicit expressions
for A1 and A2.

AN, A1 and A2

Let f and.i.denote the pxp matrix and
pxpxp array of second and third partial
derivatives of the log likelihood L with
respect to the elements of 6, respectively.
Let ga denote the a-~th component of q FS
defined following (12) and partition L as

.. L1‘ L12

LZI l'22

where l..JJ is pJ x pJ, J=1,2.
Since g maximizes L(61.02) for each fixed

value of 6_ we clearly have

2
al.(g(ez) '92)
=0 (A1)
%, g-8(0,)
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for a-l,z.....p1 and all 02. This ldentity

will be used as the basis for obtaining A‘ and

AZ'
Differentiating both sides oE (A.1) with

respect to 92 and evaluating at 02 gives

(L1‘. LlZ)Ai =0
Since the submatrix consisting of the last p2
TOWS of.A1 is an identity matrix it follows

that

a, ol M2 (A.2)

Let e =y - ri(e). The the first term of

. n
L= (] ew »vv)r
i1

i=1
represents intrinsic curvature of F at o,
Since this curvature 1s assumed to be

negligible, L = =V1V/g2 and therefore

8,- —(vTv‘)”‘v}'vz - »-n"': Ry, (A.3)
i I
where V = (v‘,vz) and RlJ is defined in (15).
An expression for A2 can be obtained
similarly by taking second partial derivatives
of (A.1) with respect to 8, and 8

2r 2s’
r,s-1,2,....p2. This yields

1 320
L —b
bet 4P 362r3923
p E %a Ja
-~ Loy 5 s (A.4)
bel cet 3DC 36, LIPS

where L and o, denote the indicated

ab’ Labc b
elements of L, L and
T T T
a = (g (62), 02), respectively, and

2
a-1.2,....p1. The component 3 ub/362r3623 is
the (r,s)-th element of the b-<th face A f
A2. Since A2b
summation on the left of (A.4) need only range

2b °
« 0 for b-p‘41.....p the

Oy Sp® Sab ied Ae® Ned b ¢ il g0 gl gl e

from 1 to Py- Notice also that aac/302r is

simply the (¢,r)~th element of 4 Expressing

1"
(A.#) in matrix notation and solving for 4,

gives

-

Here and in what follows brackets [ I[ ]
indicate column multiplication as defined in
Bates and Watts (1980). (Generally, if A is
an axb matrix and B is a bxcxd array then the

elements of the i-th face Ci' {=1,...,a, of
the axexd array C = {A]{B] are AIBJk,
J=t,2,...,c, k=1,2,...,d, where AI is the 1-th

row of A and B,, is the jk-th column of B.)

Jk
As before we will take
T 2
Lyg = %V /o

To further evaluate AZ' we require the
pXpxp array 1L' Straightforward algebra will

verify that

Using thls representation it is easily
verified that the a~th face I; of.ﬁ.is

L == iz {[b:vr][w] + VTKa + K:v] (A.6)

where ba is the a-th standard basis vector for
p T

R" and Ka ba W i3 the nxp matrix with uac as

the c~th column. Finally, it follows from

(A.6) that

2TLz -~ -‘-2 27 vTiwlz « 2[zWT)W)z) .m
[}

where Z i{s an arbitrary px! vector. This form

will be useful in later developments.

.

-
r RS
-

sy

¥y
(3 ‘_..' .

XA
rE

‘K

o
;&

3

P




"2

ML L%

v r

R AR AR R IAIN

Vo0 Bed U Dyt By 19" 8 A LT vAMgE R8st Ty Ve 4V4 'K AT 2'8
A.2 Tangent plane, Term (19a)

It follows immediately from (A.3) that

(A.8)

where U2 is defined following (18). Thus, the

relevant tangent plane is the affine subspace
- A

F(e) + C(Pvlvz). Transforming term (14a)

according to (16) and (17) immediately gives
term (19a).

A.3 Parameter~Effects, Term (19b)

From the form of A2 given by (A.3), it {s
clear that term (1dc) is in C(V1) and is thus

orthogonal to the 6_.-subspace tangent plane.

The parameter-errecis component of (14) must
therefore come from term (14b).

The three-dimensional array W in (14b) can
be decomposed into the sum of three arrays

with orthogonal columns,

RS VRS LS VR (e, J¥] .9

The first term in this decomposition contains
the projections of the columns of W onto C(P;
V2) and thus it represents parameter-effects
curvature for the subset problem. The second
and third terms are intrinsic components for h
and F, respectively. Since the Intrinsic
curvature of F at ; is assumed to be

negligible, the third term of (A.9) is set to

zero. Addend (14b) can now be reexpressed as
1.,7,T7
3 2 A‘ HA1 L2

T T A.10a)

. é . Ai[Pv*Pv1][H]A‘ 4, (A.10a
T T (A.10)

. % 4, A1[”v1]("]°|‘2 (A.10b)

From (18) and (A.3) it follows that

- “T T 1
Wop = Ryp 8y W ARy,

YaPoiat, "

Using this in combination with (17) and (A.8)
to transform the coordinates tn term (A.10a)
gives term (19b).

A.4 Intrinsic Zurvature, Term (19¢c)

In the expansion of h given in (14), we
still have the sum of terms (ilc) and (A.10b)
to deal with.

Using (A.5) and (A.7) with Z = V1¢2 we

have

We first consider (1lc).

T ,T
§ V() 8, 09 = BM oy 8y L Ay 4
» gm0 (o38)

T,T, T
YL wla,e,}l  (aam

T . .T,T
=~ u [o, 8,V ][W]a, o,
T ~1
where M = (V1(V‘V‘) , 0). The first term of
(A.11) 18 exactly the negative of term (A.10b)
so that in an obvious notation
(18¢) « (A.10b) = » M[Q;AIVT][H]A‘oZ

(A.12)
TT,T

= = [oga,v )M, ] o,
From (18) and the definition of W, it can be
shown that

MWA, = UHy oo

Finally, using this relationship, (A.8) and
(17) to transform the coordinates in (A.12) we
obtain term (19c).




A I va 'l r,

‘*
£33
SN
AN
ol
\ .
N
WA
TABLE 1 ni-':“ '
Subset Curvatures - "
Model/Data Parameter Subset r: r;‘ ry ;
(33) o, .330 .183 317
Bates 3 Watts o, .393 .089 %03 ,' e
(33 ., o0 L025  .029 at
Michaells & Henton ., .050 .019 .053 N
(3%) o, .217 KT 318 N
Draper & Smith o, .053 .ouh .069 ;.._ ":_
s, 165 .180 il [ IS
* . .
Y
(35) o, .003 .059 .059 X
Ratkowaky o, .153 RE?) .203 y

-1.500 L ! l

-3.00 -1.50 .08 1.58 ~3.00
%9

Figure 1. 95% con"denge :eglons for (0‘.82) from the Fleller-Creasy
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1. Background

Knowledge Acquisition in REX and Student
William A. Gale

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

REX (Regression EXpert) demonstrated the feasibility of building data
analysis consultation programs using expert system techniques. However,
experience with REX development showed the need for automated
assistance in building, maintaining, and extending knowledge bases for other
specific data analytic tasks. Symptoms of this need were difficulty
maintaining consistency across examples, need for the statistician to learn an
obscure language, and difficulty of specialization.

Programming by examples is a natural approach in the statistics domain,
because working examples is necessary in any case. Such an approach
would address the problems noted in the development of REX. Three
fundamental steps in the development of a practical programmed-by-example
system are the acquisition of the first example, acquisition of an additional
consistent example, and the integration of an inconsistent example.

By restricting the domain within which knowledge can be acquired to data
analysis, it has been possible to design practical solutions to these three
steps. The first phase of Student, a system designed to learn data analysis
strategies from ecxamples, has been implemented. It acquires the first
example in any data analysis area, and incorporates many features required
for handling problems of additional consistent and inconsistent knowledge.

REX is a consultation program in an area of
statistics, regression analysis, built using expert
system techniques. Its performance was
described in [Pregibon and Gale, 1984]. It had
an active life as a demonstration system,
running about weekly for a year. It
demonstrated the feasibility of using expert
system techniques to build a consultant in data
analysis. However, as detailed in the next
section, the knowledge aoquisition process for
REX left a lot to be desired.

Regression analysis is one technique of a
broader category of data analysis techniques.
Other techniques include spectrum analysis,
analysis of variance, and cluster analysis, for
example. A statistician doing data analysis
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operates on a data set or example. A general
goal of the analysis is to meaningfully
summarize the salient features of the data set.
The standard form of summary is a statistical
model, typically with parameters estimated from
the data set. By using plots and numerical tests,
the statistician detects incompatibilities between
the model and the data set, which are
ameliorated by some action, such as
transforming a variable, changing the model, or
changing the method of estimating parameters.

In mimicking this process, REX checks for
problems using tests, and recommends actions to
the client after verifying that a pruposed action
will solve the problem found. It offers to show
the client plots whenever it detects a problem or
recommends an action.
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In building REX, the statistical knowledge it
contains has come to be called a "strategy” for
regression analysis. The term seems appropriate
as the nature of the knowledge includes

what problems to look for,

when to look for them,

how to look for them,

bow to decide if they are real, and
what to do if they are.

There is very little statistical literature relevant
to strategy, and indeed, REX, as an
environment for developing and testing strategy
has opened up a new area of research.

2. A Critique of Knowledge Acquisition in REX

Developing a strategy for use in REX was a
labor-intensive process. Two phases can be
distinguished. In the first phase the statistician
responsible for the strategy, Daryl Pregibon,
chose a half dozen regression examples that
clearly showed some common problems. He
then analyzed them using interactive statistical
software with an automatic trace. After
analyzing the group of examples, he studied the
traces and abstracted a description of what he
was doing. We ocoded this as a strategy for
REX and tried it on a few more examples. He
revised the strategy completely at this point, and
the second phase began.

In the second and longer phase, one of us
selected one additional regression example and
ran REX interactively on the chosen example.
Typically the strategy would not handle the
example (since the example was selected
knowing what would stretch REX), and we
modified the strategy so that the example would
be handled. This process was iterated through
about three dozen more examples.

Based on this experience, and on a feeling that
it was typical of other techniques, we do not
believe it is possible to construct a data analysis
strategy  without working through many
examples. The range of the decisions needed to
construct a strategy is extreme, and there is no
literature simplifying the task. Therefore the
only available defense of a strategy is to
demonstrate  performance, which requires
working many examples more than those used
to construct the system. Qur experience also
leads us to believe that it is easy to generalize
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from data analysis examples -- relatively few
examples are nceded to exhibit the required
distinctions.

However, the way in which we worked
examples for REX was far from ideal. The first
difficulty with our method was assuring
ourselves that a strategy modified to work one
additional example still worked all previous
examples. We could by brute force run REX in
batch mode on all previous examples and see if
the performance was the same. Usually we
reasoned that most of the previous examples
could not be affected, and checked the few that
might be affected by hand. Naturally, the more
examples worked, the more severe this problem
became. The necessity to check consistency in
batch mode for a system designed to be
interactive reduced the flexibility of the strategy
developed.

Secondly, the method used was the epitome of
the currently standard two-person development
of expert systems. I wrote the inference engine
used while Daryl was responsible for the
strategy developed. Whenever Daryl wanted to
do something he hadn't done before, we had to
huddle, as Daryl was learning a language he
would only use to construct one program. In a
department with twenty professional statisticians
and one person intimately familiar with the
inference engine, it was not clear how many
additional data analysis techniques could be
handled by this two person approach.

Thirdly, it would be difficult to modify the
strategy in REX. Modifiability is important first
because a growing literature on strategy can be
expected to suggest desirable changes. It is
important secondly because strategies need to be
specialized to the needs of a particular group.
Statistics is a discipline that is applied in other,
"ground”,  domains. Current  knowledge
representation and  language  generation
techniques are not adequate to producing a tool
that will speak physics with physicists and
psychology with psychologists. An alternative
to one broad tool is a tool that is readily
specialized. However, the first two problems
would make this difficult: to specialize the
program a local statistician would have to learn
a fanguage used by no other program in the
world, and the modifications made might
inadvertently destroy some capabilities of the
strategy.
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One valuadble insight gained from building REX
is an abstract view of its strategy that we believe
can be transferred to other data analysis
techniques. A practical data analysis consists of
an attempt to use a simple technique that is well
understood (by statisticians!). However, its use
is subject to a number of assumptions which
may or not hold in a particular data set. When
an assumption is violated, either the data must
be modified to fit the simple technique, or a
more advanced technique must be used. In
other words, it bas been possible to view data
analysis as a diagnosis problem (although not all
statisticians agree!) This view is "meta-
knowledge™ about data analysis which has been
built into Student, as described below.

3. Requirements for Learning By Example

The necessity of working examples to construct
a data analysis strategy suggests examining the
possibility of acquiring strategies directly
through some process of working examples.
The previous discussion suggests that the
process would need to assist the user in
establishing consistency across all examples
worked, and should not require the statistician
to learn an obscure language.

I am suggesting that progress in knowledge
acquisition is possible through restriction of the
domain of knowledge to acquire. An issue for
this approach is whether the restricted domain
is broad enough to be worth the difficulty of
constructing a special tool. For data analysis, I
believe the answer is yes. A human statistician
is typically expert in one or a few types of data
analysis, while a dozen data analysis techniques
would cover the bulk of data sets analyzed
[Snee, 1980). One might ultimately distinguish a
few dozen data analysis techniques. Therefore,
many statisticians will be needed to construct a
teasonably comprehensive data analysis expert
system.

A program by example system is enticing for
other reasons. First, it would be useful for the
study of statistical strategies to collect multiple
strategies for the same type of data analysis.
Combination of knowledge from multiple
experts is an open problem in expert system
construction. I view collection of a body of
strategies from multiple experts as a necessary
precursor to scrious study of this problem.
Second, a statistician at a specific location could
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specialize the system by working examples
typical of local practice. The value. of
specialization - was discussed in the previous
section.

A few systems previously developed come to
mind in considering construction of an expert
system by working examples. Teiresias [Davis,
1979} is the chief example of a program
designed for interactive transfer of expertise to
an expert system. The mode of using Teiresias
was to be that of selecting of an example,
letting the system run until it made a mistake,
eliciting the key piece of knowledge to avoid the
mistake, and adding the new knowledge. The
system therefore operates by acquiring an
additional piece of knowledge presumed
consistent with that previously acquired. In
addition to adding consistent knowledge,
however, there are two other major problems
that need to be solved for a practical learning by
example system.

First, the system must support the acquisition of
a first example or rule. In a production system,
the first rules acquired are typically different
from later rules, because the system uses a core
of rules to encode ocontrol information. A
subject matter expert will not be able to provide
control information.

Second, the system must support deliberate
changc< to the knowledge base over time. We
need to « ctly determine the consistency of
new exa- with previous examples, not just
assume .. We do not want to take a
"debugging” attitude, but one of showing what
is right the first time.

On the other hand, there are some systems that
support programming by example, although
none of them are for construction of expert
systems. Tinker [Licberman, 1983], PHD
{Attardi and Simi, 1983}, SBA {Zloof and De
Jong, 1977}, and a system by Bierman and
Krishnaswamy [1976])  are examples. Attardi
and Simi review several of these systems, which
are  designed for office automation
programming. Tinker appears to be the closest
to our ideas for Student.

In using Tinker, the programmer selects a
concrete typical example of data for the
procedure. He then performs the procedure
step by stcp. The system is therefore able to
learn how to do the first example. As more
examples are supplied, the program required for
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them is compared with the already constructed
program. If the two differ, the user is queried
for a predicate that will distinguish the two
cases. Therefcre, the user ultimately provides
one example for each branch of the final
program.

Tinker seems to assume that the user knows
how each example should be worked; there is no
means to change the program by deleting an
example already worked. The way a particular
da.a analysis should be done is not cut and
dried, and indeed, the statistician is typicully
learning about a particular example while doing
the analysis. I have built into Student some
means of modeling what the statistician has
learned, or may have learned, to capitalize on
this opportunity for knowledge acquisition. I do
not yet know how effective this will be.

On the other hand, Tinker is tackling a harder
problem in that it hopes to support Lisp
programming of any procedure. Lieberman
demonstrates its level of success in this by
creating a simple editor. It is an enoouraging
demonstration. Tinker’'s use of menus,
pointing, and question answering are suggestive
techniques.

4. Preliminary Experience with Student

Student is a system designed to allow a
statistician working alone to build an expert
consultation system in a data analysis area. A
first phase has been implemented. The first
phase is designed to acquire the first example in
any data analysis area.

Student can be operated in two modes --
consultation mode and learning mode. In
consultation mode, it will work functionally in a
manner similar to REX, suggesting acceptable
ways to analyze a given data set. Since it is
general to the extent of data analysis, it would
handle a much wider range of problems than
REX does, given the requisite strategic
information.

Student is able to acquire the first cxample
because it is limited to data analysis, and is not
a general purpose tool for learning arbitrary
things by example. In particular, the meta-
knowledge about what a practical data analysis
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is, inferred from building REX, is built into
Student. This meta-knowledge is represented as
2 network of eleven types of frames, as shown
in the following table.

input variables
data types
assumption testing
plot
generic plot
test
generic test
action
question discriminator
predicate discriminator
words

Each type of frame has its own set of slots,
which represent the things that must be known
in order to carry out a consultation. When a
slot has not been filled, the system knows that it
doesn't know that information. It can then do
something to acquire the information, which is
usually just to ask the statistician.

Student manages two major data structures.
One, the strategy, has just been discussed. The
other is a second network of frames that
represents a trace of the analysis of the current
example. It is built of three types of frames:
entry points, decisions, and actions. The trace
can branch at each decision point, if the user
gives more than one response (at different
times) to a question posed b Student. A
decision frame records all the responses to a
given question, and book keeping information to
uniquely express the set of answers effective at
a given point in the trace. The action frames
represent each side effect action taken by the
program. The entry points are created each
time an assumption testing frame is begun in the
strategy. They allow the user to return to the
same exact context in which the frame was
begun at any time. The u.cr can then reach any
decision previously made by stepping through
decisions to be left standing.
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These two data structures support phase 1 and
have been designed with an eye towards work
on phase 2 (acquiring an additional consistent
example) and phase 3 (acquiring an inconsistent
example). The remaining paragraphs in this
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section  discuss how  consistency and between two strategies. Each node represents a !'
inconsistency are expected to be handled. strategy which can be derived by integrating the .}_‘:-.
The analyses demonstrated by the statistician ordered st of traces from the root to the sode. :"\.";':
are assumed to be acceptable analyses of the 5. S P ,
examples (as judged by a statistician). A major - Summary A
focus of design in Student has been to assure REX is a working demonstration of the K
that as' a data analysis strategy evolves, all feasibility of expert systems for data analysis. It {:. {:_
previous analyses remain acceptable analyses (as has several strengths: a convenient user NI
judged by Student’s strategy). This is the basic interface, ability to solve standard textbook N
test of consistency. Points at which consistency regression problems, and a modest ability to IR
is not obvious have been found to fall in four explain the reasons for its suggestions. el
categories: provably consistent, mechanically However, it also has limitations, mainly in e
consistent, mechanically checkable, and supporting strategy acquisition, modification, L ‘
provably inconsistent. A provably consistent and specialization. NS
change results when pre-specifiable data is . . . o
sufficient to prove consistency. A mechanically Student has be:en designed to b“!ld upon RF‘X s T
. . . strengths while overcoming its limitations. oL
consistent change resvlts when information d i . . e
needs to be gathered by reexamining previous Student will allow statisticians tc.) construct or R
examples, but the result must be a consistent extend knowledge based consultation systems by ! :
strategy. , A mechanically checkable change working examples n_nd answering questions. bl

requires reexamination of prior examples in This will provide easier and faster coastruction N
or?ler to show consistency ag:l the revi e?w may of better consultation systems in data analysis. '; :}
’ Y

establish inconsistency. A provably inconsistent The proposition that Student explores is that by ’;:\
change results when pre-specifiable data is restricting the domain within which knowledge o

sufficient to prove inconsistency. can be acquired, significant assistance in €

. . knowledge acquisition is possible. The control k.

Treatment of inconsistent changes rests on how : ¢
the trace of the latest example is related to the information peeded to structure the f'!rst &:’-;
accomulated strategy. Each example worked example can be provided. The information b __:
produces a trace with all the information neoessaty ‘.o prove Whether a ch_n;:ge of :'f\"
gathered from the statistician. Each trace knowledge is consistent can be spect 'e.d and oy
. collected. Support for changing inconsistently 2

represents an example worked in the context of ith som. ious exampl be provided g
the strategy accumulated to that point, and the he © previous cxampics can be pr ’ s
strategy changes called for by the trace are o
guaranteed to be consistent with that 6. References v':t-{
accumulated strategy. Therefore, an ordered set X :'} ]
of traces is a kind of "source code” from which /Attardi, G. and Simi, M. (1983). “Extending s
it is possible to "compile™ an integrated strategy the Power of Programming by s:,:.'_':
consistent with all the examples represented in Examples.” Appearing on pp. 3-26 3

the traces. in ‘Integrated Interactive Computing
Systems, ed. Degano and Sandewall,

A provably inconsistent change will conflict with North-Holland Publishing Company

parts of the the traces of some prior examples.

‘Those parts will have to be reworked manually, Amsterdam. -
and it is a service to isolate them for attention. . . Sy
The remaining parts of the traces can be Biermann, ;;\‘.W. and l'(nshna:amy, R. (l?_76). _u:
retained, assuming that the actions based on the EConst:uctmg o8t 'm;'. "2%12

(incorrectly derived) data, although incorrect for Txamp c om; utatlonsl.‘_ s N \
the example, were correct for the data. The s;a;sa;ﬁ;):.; ;’23 oftware Engineering KR LS
result will be a tree of partial strategies, each Sy TR e

branch representing an inconsistent difference
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MANAGING DATA ANALYSIS THROUGH SAVE-STATES *

L]

: Paula J. Cowley and Mark A. Whiting

o Pacific Northwest Laboratory

Richland, WA 99352
N Data analysis management is a methodology intended to increase the

productivity of the data analyst. A primary entity for data analysis

management is the "save-state®™, a collection of metadata and data that
N captures a state of the analysis. The analyst may create a save-state
to designate a milestone of the analysis. The save-state may be used
later to return to that milestone by restoring the conditions of the
analysis that existed at the time the save-state was created. Scientist
- at Pacific Northwest Laboratory (PNL) have developed a prototype data
analysis management system. In that system, a save-state includes
pointers to the data sets and command procedures active at the time the
save-state was created, active plot descriptions and other graphics
parameters, and comments supplied by the analyst. Associated with each
save-state is a record of the sequence of command: or operations used to
accomplish the transition from the previous (parent) save-state.
Metadata also describes the overall relationships between the save-
states that have been created during the analysis.

- NATURE OF THE DATA ANALYSIS PROCESS fact is often not apparent when the
X final results of the analysis are
» For the past several years, a team of presented, since only the successful
i computer scientists and statisticians results are presented. However, it is
working on the Analysis of Large Data useful to keep track of these dead ends.
& Sets Project (ALDS) at the Pacific They can be useful in showing that the
- Northwest Laboratory (PNL) has been analysis was rigorous and complete and
< investigating the nature of the data that reasonable alternatives were
N analysis process (1,2,3,4]. There were investigated. .
i several motivations for this work. We :
- wanted to understand the analysis The analyst may have several 3
‘ process better. We wanted to provide alternatives to explore at various &
‘ better tools. We hoped we could learn points in the analysis. Since only one b
- more about how ar expert data analyst alternative can be dealt with at a time, ol
- worked in order to help less experienced it is useful to be able to return to xfz*
'l analysts. previous points in the analyses in order }i{{
.7 When we examined the data analysis to try another alternative. “}%J
-, process, we were able to identify The process is characterized by fits and “{:‘
several properties of it. The process starts, dead ends, and decision points e
tends to be iterative with similar with many options to explore. Although -
- operations applied repeatedly for we can think of the process as
- different data sets and subsets. The proceeding linearly through time from
X process tended to be exploratory. The beginning to end, the process really has
.. analyst has some basic ideas of how to more structure to it than that. Rather
KX approach the analysis at the onset, but than representing the process as a
' .. the direction the analysis takes often straight line, the process is better
) results from the knowledge gained from characterized as a tree where the nodes
previous points in the analysis, of the tree represent significant points
A Because of this, data analysis is best in the analysis, which we call “save-
o pursued interactively. It is very states,"” and the lines between the nodes
& difficult to write the complete script represent the steps in the analysis that
. for the analysis betore it begins. took place to create the child node from
Y, the parent node. Figure 1 shows how
% The analysis process can result in many such a tree can be depicted graphically.
» dead ends. Because of its exploratory From any point in the analysis
) nature, the analyst may try several designated as a save-state, the analyst
o approaches that simply don't work. This can proceed vntil a significant point in
=
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Path B,
Third Node
Path B; ¥*
Fourth Node

FIGURE 1. The Data Analysis Management
Display

the analysis is reached.
be defined as a new node
The analysis can proceed on from that
point or the analyst can return to a
previous node in the analysis and begin
another path. By allowing the analyst
to go back to previous nodes and
proceeding from that point, a tree can
be created. This graphical
representation also depicts where the
analyst is currently working. The star
at the end of a line segment indicates
that the analyst is currently proceeding
down the path indicated by the line
segment and the analyst may create a new
node at any time. The new node will
replace the star in the graph.

This point can
of the tree.

COMMON TOOLS FOR DATA ANALYSIS

There are a number of tools available as
aids in performing computer-based data
analysis. Although these tools have
improved steadily over the past several
years, there is very little to help the
analyst manage the process. The
sections below discuss the desirable
characteristics of data analysis tools
and, with the exception of the section
on statistical functions, the areas in
which they lack capabilities for helping
the analyst manage data analysis.

Statistical Functioms. Most statistical
analysis packages are built around a
library of statistical functions that
can be applied to data sets. However,
no package can anticipate (or afford to
develop and maintain) all functions the
analyst may want to apply. Some systems
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such as AT&T Bell Laboratories' S System
[5] have been designed to be extensible
so that the analyst can add new
functions as they are identified and can
run functions available in languages
such as FORTRAN within the environment
provided by S.

At PNL, we have always attempted to
build systems which can utilize existing
data analysis packages. The work we
have done in data analysis management
was built using S as a base.

Most systems for data
analysis have facilities for data
management that allow the analyst to
organize, store, and retrieve data.
provide capabilities for data to be
brought into the system for analysis and
for data and results to be displayed and
printed as output. Some systems have
better facilities for organizing data
than others. Some support more
complicated data structures than others.
Some allow the analyst to provide
meaningful names rather than simply
assigning column numbers to data
variables and leaving it to the analyst
to keep track of which column contains
which variable.

All

It is often useful to store data that is
derived during the course of the
analysis. Some of this derived data may
consist of intermediate results that can
be useful in later phases of the
analysis. The process of storing and
recalling derived data should be easy to
perform.

Both raw data and derived data need
metadata to describe characteristics of
the data itself, such as the data's
source, its units, how it was calculated
(if derived), what missing value code(s)
are used, why it was generated, and what
its role is in the analysis. It is
important to be able to associate the
metadata with the data and make it
easily accessible in a meaningful way to
the analyst.

It is important to provide the analyst
with a way of keeping track of the data
sets. Some of this can be provided
through the metadata and through good
naming conventions, but current packages
provide no facilities for associating
data sets with particular stages of the
analysis. The analyst has no automatic
way of knowing when the data set was
analyzed or where it is used in later
stages of the analysis.

It is useful if the analyst can record
the context in which a data set was
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this context by describing such things
as why the operations that created the
data set were performed, how the
operations were useful, the relevance of
the operations, why the data is being
preserved, and what insights were
gained. It is not only useful to
associate this context with the data
itself but also with the portion of the
analysis process in which the data set
was created or used.

We see a need to provide the analyst
with tools for recording this type of
information. The most common mode is
for the analyst to type in the
information through a keyboard --
perhaps using an available text editor.
Another way to capture this information
is by using an audio tape recorder. The
analyst can dictate insights and
comments and store them so they can be
played back later. Our tape recorder is
computer-controlled so the recorder can
automatically advance to the segment of
tape containing the comments relevant to
a particular save-state. The system
shoula be designed so the analyst can
use the mode of annotation with which
he/she is most comfortable.

Graphics is recognized as an
essential tool for data analysis. It is

currently used during all phases of data .

analysis including data checking and
validation, data exploration, and data
confirmation and presentation. However,
it is often difficult to regenerate a
given graph. 1In order to do so, the
data sets must be available exactly as
they were before and the conditions
under which the graphics were generated
must be the same, Sometimes it is
difficult to even recall when during the
course of the analysis the graph was
produced.

Logs. Many statistical analysis
packages will record the course of the
analysis in a log (also called a diary
or journal). The analyst can turn the
log on and off as desired. When the log
is turned on, all the commands entered
by the user at a terminal are also
written to a file., The log can provide
a history of the course of the analysis,
including all useful commands, non-
useful commands, and mistakes. The
analyst can also insert comments into
the log as additional documentation.
Some systems permit the analyst to have
results (output) added to the log.

Even with comments inserted by the
analyst, logs can often be
unintelligible without detailed, time-
consuming study. While they record the
actions in the order in which they
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transpired, the data analysis process is
not strictly linear in time. As
mentioned earlier, the process can be
depicted as a tree. One of the
advantages of such a graphical depiction
of the course of the analysis is that
segments of the logs can be associated
with particular nodes in the tree. The
log segment that is associated with each
node is the set of commands that caused
the node to be created from its parent.
This technique gives structure to the
log.

As mentioned
before, the data analysis process is
iterative. The same operations are
often applied to several data sets or
subsets. Analysts routinely create
macros (or procedures) consisting of
sets of commands that are saved and
stored as entities. These procedures
are often parameterized so they can
operate as needed against various data
sets. Analysts often build macros from
the log. The log is edited to remove
errors and superfluous commands and then
tested. It is refined and debugged.
When the analyst is satisfied, the macro
can be stored for later use.

In S, macros are stored in structures
similar to those used for data. The
analyst can differentiate between macros
and data because the names of macro data
structures are prefixed with "mac.”

Just as data sets should be associated
with portions of the analysis, it is
useful to associate macros with portions
of the analysis in order to identify
where they were created and where they
were applied.

THE SAVE-STATE

We have developed a new methodology to
aid the analyst in managing the data
analysis process. The primary entity
for managing data analysis is the "save-
state," a collection of metadata and
data that captures significant
information about the state of the
analysis at a certain point in the
analysis process. The analyst may
create a save-state at any time during
the analysis. Save-state may be created
for any number of reasons:

-~ The analyst may wish to designate a
milestone in the analysis because a
significant insight was gained at
that point in the analysis.

- A decision point was reached in the
analysis and several different
alternatives can be explored from
this point in the analysis.
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- A dead end was reached that is ADAM

worthy of being preserved for

documentation purposes. In order to provide easy access to the

tree of data analysis save-states and
take advantage of its natural structure,

- A more significant alternative et
necds to be expiored but the ouE Prototype data analysis managencot i
portion of work is incomplete and Y ! ' grap bt oLy,
the analyst must return to it prototype has been implemented on a 'S,
later. Digital Equipment Corporation VAX >

11/7680. The high resolution graphics
display device is a Ramtek 94P0. The
audio cassette deck used for recording
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Once a save-state exists, the analyst
can "restore” that save-state in order
to resume analysis from the point at
which the save-state was created. The
effect is as if the analyst had moved
back in time to the point at which the
save-state was created.

Information associated with the save-
state includes the name of the save-
state, the data and time the save-state
was created and last accessed, the name
of the analyst who created the save-
state, the states of varjious icons
(described below) that are part of the

and playing dictation is a Yamaha K-7080
cassette deck. As mentioned earlier, we
are using AT&T Bell Laboratories' S
statistical analysis system. § is
running under Eunice, a UNIX derivative
that allows VMS to be run as the base
operating system while still providing
UNIX functionality.

The tree of save-states is always
present on the high resolution color
graphics device whenever the analyst is
performing data analysis management
functions (see Figure 1l). This is the

o save-state, a list of the data sets and sa:eth;ige i:atd;:au::gltgigisp;zg
macros associated with the save-state, a g; g ;: i :r gts ith ADXH tﬂrou h a
list of plots associated with the save~ s aiy fn e::s ;rio it windowg (6]
N state, written comments entered at the ait :: g mgoth.the me;usyand the
- keyboard, and information that points to vindowe are besed on the principle of
» verbal comments saved on cassette tape. noozsiarediaciosure eTge anag st
S This information is sufficient to give successlve dis .d {1 &i Yl a
- the analyst a quick overview of what the controls the level of deta sp_aye
save-state contains and why it was at any time. The analyst can select
created. The analyst can "scan” the more or less detailed menus or graphical
save-state to view this type of displays of the save-states and log
t information without having to restore segments as desired.
- the save-state and incurring the :
- We have defined three classes of
1 overhead of moving data sets around. functions that can be performed using
the menus., There are (1) functions that
- Besides storing the save-states -
- themselves, information is stored that :re performgdton save :tateg, (2) t
allows the relationships between the unc§1ons tha da:g per.g;:e fon ::gmen 8
various save-states to be graphically of t e'lgg, :n (1) uti lyd uggTUgEs'
- depicted. 1In order to do this, the The :tll ty u:ct ons inciude t '
= system stores an internal name for the :hig allows the analyst tzimzve °ig
. save-state; its title; a set of indices igher level menu; HELP, which provides
., that depict the parent, child, and help on the menu currently displayed;
. sibling relations between the save- MOVE WINDOW, which allows the various
. states; a flag that indicates whether winaows on the screen to be moved from
the save-state has actually been deleted Place to place; and S—MogE whichlaliows
_ and only a place marker is preserved; the analyst to exit the data analysis
- and a flag that indicates whether the management mode and return to the S R
) save-state is the currently active statistical analysis package to perform S
- state, the last scanned state, or is an further analysis. SRR
> incomplete state waiting to be created. The functions that can be performed on
; Also associated with each save-state is save-states include SCAN, RESTORE,
/ the segment of the log that contains the gggigi' SﬂgwngggggRK,B:g:sngE:zgRK,
set of commands that describe the r an ° N —
transition between the state and its functions is discussed in more detail T
N parent state. below. {?{:
-
- The SCAN function provides the analyst o X
? with an overview of the save-state being W i
;; scanned. Information from the save- L}u&,
state is displayed in a window that e
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State Menu Data

Scan g —
Restore Q @@ -
Modity

Show Network
Erase Network
Create
Delete

Title Path A; First Node
Author. John Q. Analyst
Created. 10/12/84 11.:54

Last Accessed: 10/12/84 12:00

Move Window
H Path A;
elp
Return Dead End | | Comments:
S-Mode 3 Verbal Comments Exist
Datasets and Macros:
x ybar states
L] mac.fluptest
- \
Path B; 5%
Fourth Node

FIGURE 2. Scanning a Save-State

overlays the graph of the save-states.
The SCAN display is shown in Figure 2,
On the color graphics device, the save-
state being scanned is shown in a color
different from the color used for the
other save-states. 1In the figure, the
save-state being scanned is shown with a
thickened line. The icons indicate
special characteristics of the save-
state. The light bulb icon indicates
that special insight was gained at this
point in the analysis. The ear icon
inaicates that the analyst has dictated
some ideas on cassette tape which can be
playea on a computer-controlled audio
cassette deck. The eye icon indicates
that some graphics are associated with
this save-state and can be recreated if
desired. The keyboard key icon
indicates that the analyst has keyed in
some documentation which can be
displayed in a window if desired. The
SCAN function can be performed with very
little overhead. No data sets are
accessed or moved except the small data
structure that contains information on
the save-state.

The RESTORE function allows the analyst
to move back to a previous point in the
analysis at which the save-state was
created. Whenever the analyst restores
a save-state and returns to the
statistical system to do more analysis,
the evolution of a new save-state has
begun. The RESTORE function requires
that data sets currently in the working
data base are replaced by the data sets
belonging to the restored save-state.

The NODIFY function allows the analyst

Create Menu Data
Modify Title Gclh?mg_ and
Modify Author erification
Toggle Icons /\
Comments Path A; Path B,
Datasets First Node First Nod
Move Window Irst i
Help I I
ut Dead End Second Node;
Path B;
Third Node
Path B; A New
Fourth Node Save-State

FIGURE 3. Creating a New Save-State

to directly modify the save-state. The
analyst can modify the author or title
of the save-state, turn the icons on and
off, modify documentation associated
with the save-state, and modify the list
of data sets and macros associated with
the save-state (although this does not
change their contents).

Although the data analysis process is
most often depicted as a tree, we
recognize that the process is not
strictly a tree. 1t is really better
characterized as a network., The process
becomes a network whenever the analyst
includes a data set in a save-state that
the save-state did not inherit from its
parent (e. g., a data set is imported
from another save-state not in the
current analysis path). However, we
recognizeu that continually depicting
the network would make the display so
confusing that it would be very
difficult to get a good overview of what
was going on. We created the SHOW
NETWORK and ERASE NETWORK functions to
allow the analyst to see the underlying
network structure when desired and to
remove it in order to restore the
uncluttered tree representation. When
the network is displayed, arrows are
drawn from the appropriate non-ancestral
save-states to the save-state currently
being scanned or restored.

The CREATE function can be invoked as
desired whenever the analyst feels that
a significant point in the analysis has
been reached. The options of the CREATE
function are shown in Figure 3. When
the analyst creates a new save-state,




the analyst is prompted for a title,
The analyst's name was provided as the
author's name at the beginning of the
ADAM session. Both the title and the
author can be modified if desired. The
analyst can turn icons on and off, add
verbal and/or written comments, and
include or exclude datasets and macros
during the creation process. When the
creation process is complete, the
analyst can either choose the option to
store the newly created save-state and
return to the higher-level menu or quit
and return to the higher-level menu
without creating the save-state. The
analyst can move back and forth between

the statistical analys.s system and ADAM

without creating save-states.

When a new save-state is created, the
star (asterisk) on the tree that marks
the current point in the data analysis
process is replaced with a box
representing the save-state. The newly
created save-state becomes the current
save~state and any further processing
will proceed from that point in the
process. If the analyst restores
another save-state, processing will
proceed from that point instead.

The DELETE function can be used to mark
save-states as deleted., The analyst
cannot restore, scan, or modify a
deleted save-state, The deleted save-
state appears on the display as a circle
without a title in it.

The log functions are SCAN LOG, SCAN
PLOTS, EDIT LOG, and CREATE MACRO. The
analyst can perform any of these
functions on any log segment. When the
analyst chooses SCAN LOG or SCAN PLOTS,
a winaow is opened on the graphics
device and the information is displayed
as typified in Figure 4. There may be
more information available than will fit
in the window. The analyst can scroll
between portions of information. 1If the
analyst wants to edit the log or create
macros, ADAM will invoke a standard text
editor so the analyst can edit the log
segment of interest.

FUTURE DIRECTIONS

ADAM was designed by a group of computer
scientists and statisticians with the
needs and desires of the statisticians
in mind. Our next step is to test ADAM
under the conditions of a real analysis.
There are a number of questions we are
seeking to answer. We want to know how
well the concept actually works in
practice. Our experience with ADAM will
form the basis for the next generation
data analysis management system.

Log Menu Data
Gath
Scan Log o Log Infarmation
Verifi
Scan Plots
Edit Log >1s
Create Macro > ram
Move Window F‘Path A > mprint (mac. Thst)
Help irst Node > options (echo: 1)
S-Mode l > # executive film loop
Return 2 # test
Pa'::’d > ? fluptest
Dead En > # par {cex=2)
> # par {col=1)
“flefr”
Patl > # flenti{ lefr )
Third > # par (col=2)
2] > # ficnii(“figo™, 10)
Path B, A New
Fourth Node Save-State

FIGURE 4. Scanning the Log

We are concerned about how we can clean
up the log in order to make it more
intelligible and still maintain in it
what is necessary and sufficient to
replicate graphics and restore the save-
state. Our current DELETE command only
marks a save-state as deleted. We need
to determine how to truly delete save-
states and what the implications of
these deletes are with respect to other
save-states which share the same data
sets. We already know that a delete of
a state with no children is different
from a delete of a state that has
several children. We want to
investigate whether comments recorded on
cassette tape are really useful and how
their usefulness compares to comments
that are typed into a file by the
analyst.

The environment provided by machines
designed for artificial intelligence
work show great promise for both the
programmer and the analyst. We are
investigating whether these machines can
provide a better environment in which to
do both data analysis and data analysis
manhagement.

* This work was supported by the Applied
Mathematical Sciences Group, Scientific
Computing Staff, U. S. Department of
Energy., under contract DE-AC@6-76RLO
1838.
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IMPLICATIONS OF ADVANCES IN COMPUTING FOR GRADUATE STUDY IN STATISTICS

Wilham £. Eddy, Albyn C. Jones, Robert E. Kass, and Mark J Schervish

Department of Statstics,
Carnegie-Mellon University
Pittsburgh, PA  USA

1 INTRODUCTION

The abihty of statisticians 10 pertorm calculations,
botn numerncal and non-numencal has changed
radically in the last few decades and the pace of
change continues to Increase. In providing graduate
students  with appropriately modern  training,
statistics departments must respond by
modermzing both computing environments and
curnicula. These are intertwined, the course serving
needs created by the environment, and the
environment  determining some choices among
topics in the course. This paper will describe the
current  environmemt  at  Carnegie-Metlon and the
content of a course that we believe shouid be
taken by all Ph. D. students in statistics. We make
further ntroductory remarks, then present the
resource description in Section . and the course
description in Secuion 3.

1.1. The Past at Carnegie-Melion

Thirty years ago statisticians did thenr computation
on desk calculators. As recently as 10 years ago,
the CMU Statistics Department relhied on  the
campus computing center's IBM 360/67. Course
work  was pamarnly theorencal, using pencit and
paper exercises and no computing. At about that
time the umiversity made a strong commitment to
the wide-spread use of interactive computing for
educational purposes. By 1980 CMU was acquiring
about one DEC 2060 and 100 terminals per year for
the centrat computing faciity, and had acquired
software such as BMDP, SPSS. MINITAB, IMSL,
DISSPLA. and TELLAGRAF. These facilities are
used for coursework for both undergrad and grad
students. The system can support about 500
simuitaneous users.

In 1981, the departmen! began acquiring its own
computer terminals; n 1982, we purchased our first
VAX. By the time this appears n prnt, the CMU
Statistics Department witl have i1ts own local area
network with at least six personal computers and
ten workstations (nciuding some cotorl.  Qur VAX
has an attached attay processor and we provide
our own 1i0 facines (including a pen plotter and a
graphics laser printer).

We are part of a very large local area network
witn more than 250 nodes, which (< scheduwed 10
tecome an order of magnitude targer in the next
18 months. In less than five vears we have aone
from total dependence on a jarge central computer
facyiity 1o o own independent operation based on
& supstantial number of nterconnected mactunes,
Our situation  has changed dramatically and  will
continue 1o change; 1t s our job to adapt our
graduate programs (0 the new environment.

1.2. intelligent Consumption

Computer hardware and computer software have
hecome an integral part of ouwr dailv activities. We
find 1t necessary lo devote subslantial effort to
keeping abreast of developments n both arenas SO
that out environment continues (O wmprove. We
think 1t 1s wise to transfer some of what we learn
to our studen's, as they, too, will soon make such
decisions wherever they might be.

At the same 1ime, because we do not yet have
essentiallty unhimited computational resources, we
have to be constantly aware of the I:mitations of
our environment, n  terms of both numerical
accuracy and also computationa! efficiency. Agan,
we think 1t i1s good to 1ransfer this awareness 1o
our students. Our motive 1n this case 1s partlv
setfish; graduate students can have a negative
impact on our shared enveonment if they do not
apprectate the various tradeoffs amongst the
resources availavle.

1.3. Curriculum

Computing 1s an integral part of the curniculum 3t
all levels of study mn statisitics at CMU.  Virtually
all courses other than probability theory and the
theory of inference make moderate to heavv use
of owm computing facihities, We summarnze
computational activity within our program according
to level of studv.

1. Undergraduate: Imroductory courses tor
routine elementary data analysis; Special
topics courses such as: (1) Statistical
Software Packages and (n) Elements of
Statistical Computation.

2. Masters Dearee: Data analysis 1n the
vanous statistical methodology courses;
Special topics courses.

3. Doctoral Degree: Advanced Data
Analysts coursework; Statisiticat
Computing coursework; Advanced topics
and seminars.

4. Speciahist  n Computanion.  Software
design; theoretical work on  algorithms;
numerical analysis.

2 RESOURCES

We st some  of the hardware and software
resources avatlable, and then discuss the approach
taken at CMU.
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2 1. Hardware

2.1.1. Microcomputers

The IBM/PC {and its variants) and Apple’Macintosh
are fairly powerful machines, particultarly when
compared with what was avalable n a central
facintv a decade or two ago. Random access
memory  used to be a scarce resouice; nNow,
personal computers may have half a megabyte of
storage or more. Some statistics depariments rety
neaviiv on them, and many students will eventually
e domng much of their work on these machines,

A capstantial increase in the value of personal
kN wilers occws when thev are hinked together in
& . al area network. We say more on this poimnt

belcve, we witl also brniefly discuss software for
necrocomputers.

2 1.2 Workstations

A workstation 18 a mgh resoluhon graphics
terminal connected to a dedicated host computer.
A workstation offers an improved environment for
most computing tasks, including data analysis and
soflware development. Muliple windows allow one
te perform 3 vartety of tasks nearty
cimultaneously. for example, a data analyst can
1o+ al a dataset plotted n several different
proirchions at the same time, or can look at piots
of «everal datasets side by side, or carr compose
te»t 1 one window while displaying piots in
another,

Like personal computers, workstations are more
valuable when connected i a local area network,
Tte disadvantage of a timesharing system s that
with many potlentiai users, the system 1s often
overtoaded.  Adding a network of workstations to
the cystemn aliows the mdividual users access to a
svstem that s essentially independent of the
number of simultaneous users. Our expenence with
workstations s very positive and we find the
commurication capabilities imparted by a nelwork
to be essential.

2 13 Printers Plotters, and Terminais

Frinters  and  ptotters  are  necessar,, and toca
produoction of good  quaiity text and  fiquren e
converient, Laser ponters are veory hice even {oy
non-production  documents, bt for routing  hard-
copy output @ hine pninter and  an nexpensive
plotter will suffice. Graphics termimnals, however,
vary subistantiady o providinag the capabihities that
are essential for seme research. Since (1 is hkely
that poces will continue to come down, and the
ase of  graptncal methodse  of  statistical analvsis
will continue to ncrease, it s 3 distingt advantage
for <tudente 1o become  fanuliar with  1ocatly
frogrammatie graptucs  terrminale (whether  siow,
rvee the DEC GIGH or fast and powerful, ke the
Terteonms 4,15 Doven v host computers that are
avarviants  for  aeneral computing as  well, these
devices can bhe less  expensive  alternatives to
stand alone workstations

2 14 Parallel Processing
We  have recently | added an  arra.  processor

tattached processor) 1o our hardware ctable i1 has
rouahly the power of an IBM 3083 thin only costs

about $25,000. We dont vel have enough
experience with 1t to make useful statements about
1ts role 1in traiming students, but we feel that there
1Is much potential gain from parallel computation
for statistics. :

2.1.5. Networks

Networks come in varitous flavors, We have
access 1o several national networks such as Bitnet
and Telenel, as well as an extensive Local Area
Network (LAN), the best guess 1s that we have
about 250 machines on our LAN but some of them
are located n  Cleveland, New Yort Cit,,
Poughkeepsie, and elsewhere so the term local s
somewhat abused.

in 1982 CMU and IBM signed an agreement 1o
devetlop a prototype personal computing networ
The goal 1s to provide all students, faculty and
professional staff with access to personat
computing workstations integrated into a networlk
which will provide access to data-bases such as
the hibrary card catalog, communications via mail
and bulletin boards, and software. With  the
development of effective tools for non-numernc
data processing {eg: text processmg. graphics, etc),
even departments n the liberal and fine arts are
rapidly expanding therr use, and incorporating
computing nto their curricutum.

The CMU distributed  network  will  have  the
following features:

1. Independen! access: Access to &
prersonal computer workstation and ¢
performance 15 not  atfected hyv  the
number  of  simuitaneous users on the
network.

2. Flexible access: Users can enter the
system fronm anv suitablv equipped site,
fot example a suttably equipped
workstalion at home.

3. Multiple windows: Users will be able to
mamtain several contexts
simultaneously, moving easHly from one
task to another.

4. Communications:  Users will be able 1o
commurmicate with each other through
the network. There are a mai facihities,
file  transfer capabihities, and central
database access.

5. Muiti-media capatnlities: The svystem
will be able to generate, transnmit, and
store video formation, including both
static and dvnamic images. There are
plans for audio capabilities as welt

6. Expanditiiny Currentiy the svstem has
about 50 workstahions.  Within [ ,ears
the svsiem will expand 10 thousands of
wotkstations

7. Cost-effectiveness The pricer  of
personal computers are decnming
relative to compining power much more
rapidiv than the pnices of large scale
time-sharing computers.

The pranned environment has four
etements

ystem
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Personal compulet workstations:  32-bil
processors  capable  of  execuling 1
Miinon instructions per second, having 1
Megabvie of memory with a 1 Million
pixel display of pit-map graphics { a 3M
machine). The machine wil have no disk
drives (o keep the price n the range
$3000-$6000).

. Fiue servers with locat disk storaqe and

other special facihties such  as  laser
printers, optical scanners, etg.

A communications network  lking  the
workstations to file servers and the
central facihities.

Central compuning faciimies for  large

scaile onhine storage, larqe «cate
computation, and other specianzed
services.

the cost of personal computina facihlies
decreasing more rapidiy than thar of 1atac cystems,
approach appears 10 be Ihe reast expensive
to provide access to computinag facihnes

the campus commuinity,

2.1.6 Computing in Our Department

We

staff

with

network

Our

other

nave 15 FTE faculty, about 30 araduate
students, and €& adminmistrativessecretariar «taff
are an integral part of our environment
i fact. are the only ones with guaranteed access
10 owr VAX.) Owr main processor 1= a VAX 11,750
AMB of memory, 900MB of disk storage.
maanetic 1ape drve, 24 terminal hines. 3 distinc!
interfaces and a floating-pcint accelerator.
termnats are connected to 1t through 2
centrat switching facdity which provides terminals
the opportumity to connect to any of a number
computers on the campus land, equally,
provides other terminails the opportumty to connect

o our computer). In addition, we nave B

PC XT personal computers, 2 Apple’Macintosh
perscnal computers, 2 SUN 27120 worrstations, and
the time this appears (n print)
worvstations teach with 3ME of memars. a 30ME
and the power of a VAX 11780 and

Dy

disy .

Tekiromics 4125 color workstation.

2.2 Software

There are several categories of software that

relevant.

[S]

Operating Systems UNIX 1« clearl.
becoming the mosi widely -used
operating system for mine- and
microcomputers.  Students  should  qet
some expenience with 1. On the  othe:
han<. detatted knowledge of operatinag
systems (s rarely  of  areat u.e ¢
statisticians, (One exception 1s when one
has 1o handie large arravs with wvirtuat
memory operating systems.)

Stansticat Fackages: 1t 5. of course,
essential for students to gel experience
with  the most common  statishical
packages, such as BMODP and SAS. and
itoas atse heipful for them to use the
newer, extensible programs desianed for
mteractive data anatysis, such as S and
ISP

VA Xxstation

3. Graphics: Life with a graphics terminal
1S easiest when there 1s a good library
of graphics  subroutines, ncluding,  f
possibie, some for pertorming
transformation and rotabon iocalty. "
does not seem especially desiabie {rnr
mosl students to program in a3 low-level
fanguage.

4. Svhroutine Libranes. Among the most
important toois for the research worker
and practitioner 15 the subroutine library.
Gaining an abihity to understand
computational aspects of a problem at a
depth sufficient for writing good
programs that make use of high quatity
subroutines, such as those n IMSL and
LINPACK, should be a central goal of
computing education for graduate
students in statistics.

o

Symbolic Computing Statistical
problems are being solved with the aid
of symbol manipulators, such as
MACSYMA. 1See  Gong. 1983} Like
faculty, students will benefsit bv having
a manpulation package avatlable.

6. Data Base Management. Although data
base management systems are not often
appreciated as contributing to statistica’
aspects of solutions to problems, thesr
great utihity makes expernience wiln them
valuable for studetits who will
subsequently work with large data setc.

7. Mictrocomputer Software: We have
examined several statistical  packages
with  mostly  hiscouraging results. A
detailed review of one reasonably good
package s mmven by Schervish (1985
After f(eaving CMJ, some of ow
students will WOIk primarily on
microcomputers, and it 15 worthwhile to
give them the opportumty to learn about
software for nucros whiie they are here.

8. Text processing Faculty and students
alike make use ‘of SCRIBE for document
production ranging from course handouts
10 arhicles  and dissertations. n
conjuaztion with computen
communications facihities, this promises
to alter the way many of us conduct
our research. For example, this articie
was a3 collaboration of four authors who
communicated primariy by computer
matl, including  passmgq drafts and
revisions back and fortn

3 CURRICULUM FOR PH D STUDENTS

Computing has become a basic 1ool for both the
theory and the practice of stanishics, rmuch  as
measure theorettc probability, s a bawic tool for
mathematical statistics, and should have a similar
prace i the curnicuium,  Students, even thase who
are  not planmna ¢ spraiahze o statistical
computing, need to be aware of the theor, and
practice of computingg

We  outhine here a  one-semester course  an
statistical compuning. One of us {Eddy) has tauaht a
sumilar course several times, and a related course
was taughl by 1wo of us together (Eddy and t.ass).
At Carneaie-Mellon.  this  course 15 presentiy
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inegrated imo  a two-semester course o Data example. 11 s well known 10 the computing
Anatvsic. The integranion, however, s quite rough commumity {though often not to students: that
-- for the most part we deal fust with computing computation of a sum of squares by the so-called
and then with data anatysis. There are some nice “desk-calcuiatot’ algorithm

oppotiumlies for taking advantaqe of the ) . .

compiementary  nature  of these 1we  areas  of 2ut - nxe

stanstics, bl many  of the topics  are  1asic
elements of compubing and so must be taught first
on their own,

1s numerically unstable.  Students should 1earn of
the better methods, and why they are supenior.

{See Chan, et ai, 1983' We aiso introduce the
Ciearty <« { U of techrigues of error analysis, ncluding backwards
earl, some topics must be left out of a one error analysis and s1ochastic error analysis.
semester  course. Our choices refiect nol  onh

judgments about the retative importance of various
topics. bw also the existence of relaled courses 10
the department. Some topics that are somehimes
mentioned as iMpottant 1IN a8 course on stanstical
computing  fit  better nt¢ other  parts of  ouw
curnicutum,  For exampie. the addition of soutines
10 an extensible soaftware pacrage 12 2 1opic thal
can he covered 0 the statistical software packaaes
course This s an underaraduate course o our
curniculum, though several graduate students usually
attend 1. For alternative suggestions see  Bateco
(1983 and kennedy (1983}

Students need te understand that different
macmines use different data representations, and
different technolowes for rounding. They should
appreciale the etffect of these differences on 1he
accuracy of computer anthmetic.  They should also
know of tne (EEE standard for floating pomt
computations, and understand ts advantages, and
they should be cogruzant of programnmung methods
that achieve the effects of extended precision,

3.14 Data Structures

Students  wnho have programmed n  Fortran  or
3.1. Fundamental Topics n Computer Science Pascal will know what an array s, but typically
they have no experience, or even awareness of
other data stuctwres, the use of pomiers, and

related algorithms. We introduce students 1o a
3.1.1 Computer Orgamization and Hardware vaniety of usefud data structures including  Linear
hists and hinked hists, arrays, graphs, lrees. and
We feel  that it s amportant ¢ have  an hash tables. Ar the same ume we cOver a vanen
appreciation for the orgarvzauonal structure of 3 of related  algonthms, such  as mnsertion  and
computer and suspect that this will pecome deietion  of data nems from these structures,
somewhat  more amportant  as  varnous  snds of balancing tiees, garbage coliection. eic
concurrem computation become maore
commonpiace. We therefore discuss the most
basic  elemems  of architecture, descatnng  the 315 Basic Algorithms
central processing uit, memaory, and nmput-output
devices, It can be Wworthwhile to discuss busses n addiion 1o alqontnme retatina 1o data
and mucroprogramnmuing.  We usually talk abou' the structures there are Basic altaornthme and
architeciure of a particutar machine 1 soOme detarn, thearetical <sypes thatl student< snould he awarte of,
and 11 makes sense to discuss the macmne that Our hist includes. Iteratbion tmoest students alteady
students  will use most heavily, Curtrent, that know thisl,  gjecurston  (the  dovide  and  conquer
machine g« the DEC VAX11 750 N our nest strateqy FET, tinear-time medians), sorting,
iteratton we may  also  tiscust the VAXstation 1 searching. and NP-Completeness (e.g., the Traveling
Various  kinds  of parallel  architectures  could be Salesman problemt

mncluded  here but we  prefer 1o posipone  that
matenat untn we actually discus: concurremt

posin tail.
proc ng n detas 32 Numerical Techmgues

312 Data Representation
A thoronan Fnowliedar ot mterngl data 321 Linear Algebva
reprresentation s @ prereqriecate to o unterstandhing of
severan  ather  topics.  such @s arthmenc.  error
analy cit random  number  generanion, and hashing.
Otnvousty thas knowledyge 1 3lse critical 10

It s essential that stodents understand how  the
computations 1or  Ipast  squares tinear rearession
ate, or  <hould pe, performed They need to
understand the computational detars of  Gaussian

roaran debuqaing. We feel 1t 1= essential that
f é tuaaing elimination  and  the Choipsky  decomposition  of
<tudents understand the representations  us: 1 not +
X X Tney  need ¢ understand  the  orthogonal
anty ot ther machine  but atso on a vanety ol deCOMmpoOa e Lo nques Householder  rotal 1
& 1 A il e LIVE ? YL
Oter  machines We caver fixed poimint numbers, om N ! ouseho atot

the QR adecompesition.  and  the  sinqular value
dgecompaosating nooour prearam  these 1opics are
covered breh. duimu a firt-vear araduale course
moomathematic gt methods tor stanstics, bot g e
worth  teviewing  and elaboratimag here Sturgente
shoutd alsc understand what & qgamed and what e
tost when the compulations are performed on X x

floating  pomt numbers  Gncluding the EEE F754
Froatina  pownt standard),  characler  data  (BCO,
EBCDIC. ASCt, and bt strings.

3 13 Computer Arithmetic

Basic 1o understanding of numerical analysic s
understanding of computer anthmetic and rounding

eryo Students  shoutd be  aware O e Dasic
operationsg  which  are  avadable, how  they  arr such as  the  symmetnic QR method,  condition

performed, and the types of errors thal can occur, mmmbersand computational accuracy.  ANOVA
such as  overftow, underfiow. and rounding Four calculations tor orthogonal designs  and conjugate
gradient techmiques for non-orthogonal designs,

Tnere 15 3 variety of other topics we cover in (ess
detail, ncinding  egenvector-eiqeny alue  methods
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"S 322 Opumization 3.2.4 Quadrature

a

/ Amaong computational problems of apphed Students should be aware of the poepular guadrature

. statistics,  optimization 12 ubiquitous,  the  most methods for evaluating definite inteqrals e

d common appticanon being  maxamum  hkelinood important  to discuss  hoth  one-step uce  of

N estimation.  An excellent recent text on nonhnear quadrature formulas e.g., for Gautsian ot Newton-

-, optinization that we have used s Dennis  and Cotes quadrature), having well-known error bounds,

-, Schnabel (17831 see Kass (1987) {or an extended anrt also  “adaptive quadratwre’ methods, such ac

- review. Hgn-quahity  Fortran programs  are  also the IMSL routine DCADRE. The stopping rule for

W~ avariabte, e.g., 1n MINPACK and IMSL. adaptive quadrature s crucial, Since  one  can

IJ.\ introduce errors 1IN0 the sotution by usmg stopping
We behieve that students need to understand both rules based only on the change 1n approximatons
the  theoretical and  computanonal  issues  an achieved at successtve ilerations. (See Bohrer and

o, optimization.  We consider Newton and Newton-like Schervish, 1981, and Schervish, 1984, for examples.)

A methods, and the simplex method (Nelder and The errors bhecome particularly troublesome  in

-'.' Mead. 1965 for general mimimization problems, and muitivariate integrals. Students  should also  be

>~ the Gauss-Newton method and denvative-free 1east- exposed to the Monte Carlo methods  of
squares  te.g.. Ralston and  Jennrich, 1878 for integration, including impottance sampling.

nontinear legast-squares.  We expect the cludents to
learn the basic analysis including the convergence
and rates of convergence argumentc: they shouwld
arse understand the stopping rules,  in addition, we
discus« some deas for deatina wiih constramnts

33. Computer intensive Methods

o We  devote  most  of  our efforts te Newton «

. method and ite vanants, 3.3.1. Graphics
(n our teaching expernience we have found it quite Much interesting  recent research n staustical
worthwhiie to ao over vanous Newtori-like methods computing involves graphics. There s certaniy
o the  one-dimensional  case. and require  the fOoMm 1 a cowrse  such  as this  for  extensive
students 1o wrnite proarams rmplementing each of discussion of statistical araphics, including
the  techmiques  discussed It s mportant  for methods such as projection D\}!S\M, but we have
students 1o understand the motivation for the use not vet emphasized this area within our version of
of Newton-like methods, as well as 10 gain some the course. At the least, students need some
dea of tne optrons  available and thenr possible awareness of the onaoing efforts and the existing
putfatie, Furthermore. the wuse of difference methods for displaving multivanate data  ac
auotients an ptace of dernvatives opens tne door to described. for exampie, n Gnanadesikan {1977 and
the study of secant methods, which form the basis Chambers et al. (19831
of most available high-qualbity general-purpose
code There 1 clever and sometimes elegamnt
mathematics anvolved, and this class of methods 3.3.2. Random Numbers and Simulation
has recesved substantial aftention tn orecent vears.
An anpect of secant methods that 15 extremely Simulation methods< are often used to evatuate the
umportant for s1atistics s that the approximations accuracy of asvmptotic aproximations; i some
1o the  Hessian  detenorate. We  make  swe  the cases where analviical results are not available a
students  appreciate that the final Hessian n the simutlation 1« the onhy  available technique. Since
output ol most guasi-Newton proagrams should not random numbers from a ariven distribution may be
e trusted aenerated from a sequence of umformiy distributed

random numbers, the hasic problem 15 the

W ateo apend Some time on hinear  progeatininimng aeneration ot unformiy distributed random
and constrained optimization prohbilesns We focus numbers. Standard methods anclude  the  lhinear
Gt Lagranage  mutiphers ang tunn-Tucket: congruential method, the feedback shift remste
conditions, In addition, we chscuss some of ne method, and comtunation methods such as the idea
discrete  ophrmnzauion problems,  a topic that  we of MaclLaren and Marsagha (1965} use one seqguence
tetieve  wall become  ncreasingly nnportant for of random numbers to shuffie another Once a
statintice., sequence of uniformiy distnibuted random numbers

has been qenerated. observations from artutrary
distnibutions may be dernived by vanous techniques,

323 Approximanon of Functions inctuding use of the inverse distnbution function
and acceptance-rejection methods.

Approxvmation of functions s aiready famibar to

atansticn students 1 the form of (0 approxamanion,

Tne choices p=1 and ¢ are maost faminar, but for The usual goal of a Monte Carlo experiment s to
matry computational purposes, pro s maore estimate the mean or some other functional of the
appropriale Orthogonal  polynonuals are also samphing distnbution  of a3 statistic. Various
famiiar, but discussion of thew use 1 commima techmiques for variance reduction are nused,
wilt present them n a manner that many students mcluding  mcreased sample size, use of antithetic
wilt not nave seen. Tms s a cruciar part of ther variabies, and stratification.

mathematicat traimng, as wetl, so 1 should not e

stapped. Arso fundamental 1« an introduchion 1o the Mone Carlc oty te techiques have other
theory of ranonat function approximanion: [13) apphication: t¢ stat:atical  practice. mcluding  the
addimion. we anctude  discussion of nterpelatien, evaluation of tigh dunenssonal mtegrals, eyaluation
Althougn trigonometnic approxamation and the fast ot posterion distnibutions, and Dootstrapping
Fouer Transform mas be  covered o other Stadents. must qQam a sohid understanding of the
Couraes, its amportance mares anclusion of at here basic etements of this central topic 10 statistical
matity decirabte. Some drecussian of computing.

approxamation by sphnes s also uasefu!




3.4. Concurrent Processing

We believe that the most dramatic change In
computing I1n the next decade 1s going to be the
evolution of the various very high-speed
computers. Oul students need some appreciation of
this, and we discuss concurrent computatton n
several parts of the course. Ouw detailed
introduction mncludes description of various
architectures (see, e.g., Schwartz, 1983),
inlerprocessor communication networks, and a httle
material on numerical anailysis (see, e.g., Schendel,
1984). We expect that the next steration of our
course wiill include some actual hands-on work with
our array processor.

3.5. Writing Software

Bates (1983} reports that completion of a term
project of writing, testing, and documenting 2
piece of staustical software gqives students a2
valuabie sense of the requirements of producing
qgood software. We prefer to have students devoie
then time to learming the large amount of maternial
we cover, but we share with Bates the desire 10
impart an appreciation of some of the concepts of
software engineering. such as top-down and
modular design and structured programming
tanguages, and the variety of usefut t1ools for
software wrniting, including the subroutine packages
such as IMSL and LINPACK, interaciive languages
such as APL, and matnx manipulation i{anguages
such as those in SAS or S. Thus. we ntegrate
these topics INto the course where we can, but do
not devote much time to software writing per se.

REFERENCES

[1] Bates, D. (1983). Teaching statistical
compuning. Proceedings ol the Statistical
Computing  Section of the American
Statistical Association, 63-64.

[2] Bohrer, R.E. and M.J. Schervish (1981
An error-bounded algonithm for normat
probabitities  of rectangular regions,
Technometrics 23, 297-300.

[3] Chambers, J.M. W.S. Cieveland,
B. Kiener, and P.A. Tukey (1983).
Graphecal Methods for Data Analys:s
Wadsworth, Monterey.

[4] Chan, T.F., Golub, G.H., and LeVeque. R.J.
(1983). Algonithms for computing the

sample variance: Analysis and
recommendations. Am. Statist 37,
242-247.

[5]) Denmis, J.E. and R.B. Schnabel (1983).
Numerical  Methods for  Unconstrarned
Optinuzation and  Nonlinear Equations
Prentice-Hall, Englewood Clhiffs, NJ.

[6] Gong, G. (1983). Lenmg MACSYMA help.
Computer Scrence and Statistics, fifteenth
symposium. Springer-Veriag, New York,

(7

—

Gnanadesikan, R. (1977), Methods for
Statistical Data Analysis of Multivatiate
Observations. Wiley, New York.

P P SRS
-

- . S LA
PPV FEPE T PU A VS 4

(8}

{9

—

[10)

(1]

[12)

[13]

[14)]

[15)

[16]

. BURE i R N R "gt ‘at “av o8

Kass, R.E. (1985). Review of Numerical
Methods tor  Unconsttarned Optimuzation
by J.E. Denms and R.B. Schnabel. Jou:nal
of the American Statistical Association
80, 247-248. .

Kennedy, W.J. (1983) A curriculum n
statisiical computing. Proceedings of the
Statistical  Computing  Section  of  the
American Statistical Association, 65-66.

Macraren, M.D. and G. Marsaghia (1965},
Uniform random number generators.
Journal of the ACM, 12, 83-89.

Nelder, J.A. and R Mead (1965. A
simpiex method for function
mimimization. Computer J.. 7, 308-313.

Raiston, M.L. and R.l. Jennrich (1978)
Dud, a dernvauve-free aigornhm for
nonhinear least squares. Technometrics,
20, 7-14.

Schendel,  U. (1984i. /ntroduction  to
Numerical Methods for Parallel
Computers. Wiley, New York.

Schervish,  M.J. (1984). Multivariate
normal probabilthies with error bound.
Applied Statistics 33, 81-94 ({correction
forthcoming).

Schervish, M.J. {1985). Review of the
statistical package SYSTAT. A Statrst
. 39, 67-70.

Schwartz, J.T. (1983). Design alternatives
for uitraperformance parallel computers.
Technical Report, Computer Science
Department, Courant Institute of
Mathematical Sciences.

nh N
¥

~r
o

©~rr




Pl A o

PP 2200

U IR S N

AR D A

’

:-
:..
"
L4
>

.y

0t

R

* 8,

CAT LI
e
LA DS T VDS D

KIS Ve Vgt By g Pu® et * 9" .

"y . I @ To4 fak a8 cab "ab ° D oy 4 I

A NUMERICAL ANALYSIS APPROACH TO THE TEACHING OF STATISTICAL COMPUTING

Sallie Keller McNulty

University of North Carolina at Greemsboro
Greensboro, North Carolina

The growing field of statistical computing has created the need for students to
obtain a more formal education in the subject. This gives rise to the foll?vx?g
questions. Where does statistical computing fit into the education of statistics
majors? Is there some common statistical computing b9d¥ of knowledge thefe students
should receive? How machine oriented should this training be? These topics are
addressed from the perspectives of both undergraduate and gFad?nte study in .
statistics. Is it our goal to teach students studying sta§1nt1cul computing a skill
or the theory behind that skill? The answer to this question may be based.on the
level of education and the background required of the student before entering a

statistical computing course,

1. INTRODUCTION

This section of the conference is about
the teaching of statistical computing., Is
statistical computing sufficiently important teo
be included in a statistics program? Rather
than give my own, perhaps biased, opinion of
the importance and nontrivial nature of
statistical computing, I quote M.G. Kendall
(1972).

“.e. bright ideas do not fructify unless we
can bring them to bear on numerical material,
and for many of our outstanding problems, as
we shall see, the computer is necessary."

“+s. the statistician requires a full

mathematical armory to bring his solving

process to the point where the machine
can take over if required.“

Statistical computing, unlike other areas
of specialization within the discipline of
statistics, has an ambiguous connotation. A
popular notion about someone trained in
statistical computing is that they are simply
very clever in manipulating statistical
software packages. This is neither the goal
nor the outcome of a statistical computing
education,

One way to remove this ambiguous
connotation is for those of us in the field to
establish what major topics should be included
in statistical computing courses. It is clear
in what course a student will learn about
stratified random sampling and ratio
estimators. It is not evident in what course,
if any, a student will learn about random
number generation, sweep operators, and
numerical stability.

This paper outlines topics that ought to
be included in statistical computing courses.
Statistical computing training for both
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graduate and undergraduate students is
discussed, Suggestions are made regarding
where these courses fit into the statistics
curriculum and how machine oriented they should
be. It is hoped that a result of the papers
presented in this section of the conference
will be to stimulate discussion among those of
us involved in statistical computing about the
issues mentioned above,

2, STATISTICAL COMPUTING TOPICS

Two interesting committee reports about
the training of statisticians have appeared
recently in The American Statistician . The
first appeared in May 1980 and was directed at
the training of statisticians for employment in
industry. The second appeared in May 1982 and

dealt with the training of the statistician for
the federal government. As might be expected,
there is considerable overlap in the
recommendations given in these reports.
Computing skills and a knowledge of statistical
computing was indicated to be important by both
reports. The specific recommendations in these
asreas fell into four categories.

1. Knowledge of a scientific programming
language.

2. Experience with several of the most
popular statistical software packages,

3. Experience with the construction and
maintenance of large data base files.

4, Instruction in proper numerical analysis
techniques for statistical computations.

Most statisticians would concur with
Kennedy (1982) that Items 1 and 2 should be a
required part of every statistics student’s
education. Kennedy also points out that the
experience of Item 3 is frequently attained
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through involvement in consulting. For
students specializing in statistical computing,
a special effort should be made to acquire this

experience in data base management. To fulfill

Item 4 the student would need to complete one
or two statistical computing courses.

There appears to be mixed feelings within
the statistical computing community as to
whether a statistical computing course should
be & requirement or an elective for the
statistics major. In any case, statistics
majors should gain an awareness of what general
topics are considered to be in the field of
statistical computing from their overall
statistics education. One purpose of the text
Statistical Computing by Kemnedy and Gentle
(1980) was to present, in one place, material
that is central to the area of statistical
computing. A brief outline of the topics
included in their book is as follows.

1. Introduction to the history and literature
of statistical computing.

2, Computer hardware operating
characteristics.

3. Computer software and programming
considerations for package design.

4. Floating-point arithmetic and an
introduction to error analysis.

5. Random number generation, testing, and
an introduction to general simulation
methodology.

6. Approximating probabilities, percentiles
and other special functions.

7. Numerical methods in linear algebra with
emphasis on methods most useful in
statistics,

8. Linear least squares computetions
including model building and solutions
under constraints.

9. Nonlinear least equares computations for
unconstrained and constrained problems.

10, Computational methods for alternatives to
least squares ——- robust methods.

A partisl overlap with the material listed
here can be found in Computational Methods for
Data Analysis by Chambers (1977). An
additional topic included in Chambers’s text is
graphical procedures, Another interesting book
on the subject of statistical computing is
Statistical Computation by Maindonald (1984)
which deals extensively with Topics 7 to 10 in
the outline. It is appropriate, in this
author”s opinion, to include all of the topics
listed above as well as some graphical
procedures in the battery of statistical
computing courses which is offered.

. background in either linear algebra or linear

v

3. UNDERGRADUATE PROGRAM

L3R 28 BN I
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A distinction has not yet been made in

m

this paper between undérgraduate and graduate '

education in statistical computing. In fﬂﬁ“ﬁ
general, the difference between undergraduate ﬁaﬁ};
and graduate study in any area of '1#'4

specislization is usually the smount and depth
of the material covered. The basic content of
the material remains largely the same. There
is no reason for statistical computing to be

haundled differently. ¢

572

At present, there are seversl recurring
themes in undergraduate statistical computing
courses. These are data structures, data base
management, and the use of statistical
packages. This may be due to the lack of
appropriate prerequisites for a statistical
computing course such as calculus and
undergraduate mathematical statistics, thus
making it difficult to consider many of the
topics listed in Section 2. Data structures
and data base management are some of the ACM
(Association for Computing Machinery)
curriculum recomendations for computer science.
Thus, students could probably acquire expertise
in these areas by taking a course(s) to be
found among the university”s computer science
offerings. If statistical package experience
other than what is obtained in the required

statistics courses is needed, then perhaps a
specific statistics package course should be

offered. To avoid unnecessary confusion with
respect to the field of statistical computing,
it is suggested, by this author, that courses
of the nature just discussed be titled
something other than statistical computing.

With the prerequisites of calculus,
probability theory, and some computer
programming, a first course in statistical
computing for the undergraduate statistics
major could include Topics 1 to 6 from Section
2 and some graphical procedures. This set of
material does not require a sophisticated

models. It would be very easy for such a
course to turn into a general numerical
analysis class. When teaching statistical
computing, care must be taken to emphasize
which numerical methods are important to the
statistician and why they are important. A
second course in statistical computing for the
undergraduate student is probably not Ot
necessary. The student may benefit more from L
an additional mathematics class or exposure to s
another area of specialization within
statistics,

)
.

4. GRADUATE PROGRAM :f-'._
To study statistical computing at the ;f'
graduate level, prerequisite knowledge of a n:;~
scientific programming language, statistical N

theory, and statist